An impressed current cathodic protection system (ICCP) requires measurements of extremely low-level quantities of its electrical characteristics. The current experimental work utilized the Adafruit INA219 sensor module for acquiring the values for voltage, current, and power of a default load, which consumes quite low power and simulates an ICCP system. The main problem is the adaptation of the INA219 sensor to the LabVIEW environment due to the absence of the library of this sensor. This work is devoted to the adaptation of the Adafruit INA219 sensor module in the LabVIEW environment through creating, developing, and successfully testing a Sub VI to be ready for employment in an ICCP system. The sensor output was monitored with an Arduino Uno microcontroller and the LabVIEW Linx firmware toolkit. Pulse Width Modulation (PWM) technique, which ranges from 0% to 100%, was applied by the Arduino to supply the l298N voltage driver in order to regulate the voltage input to the load. A moving average filter was employed to measure the ripple voltage averaging, and a median filter was utilized to stabilize the readings. A passive low-pass filter circuit smoothed the PWM voltage before supplying the load. The results from the MATLAB-Simulink environment showed a cut-off frequency of 2.33 Hz, ripple voltage peak to peak was 41.1 mV and a settling time of 0.157 seconds. The calibrated results of the INA219 module sensor showed an absolute voltage inaccuracy of around 2.3% at full scale. In addition, an absolute error in the current of 2.2% at 25 mA shows a gradual increase as the current increases to 7% at 43 mA, while the highest absolute error for the full scale of power was at 5.8%. The obtained measurements were highly precise, and the values of the coefficient of variation were 0.36 %, 0.28% and 0.17% for the voltage, current, and power, respectively.
Abstract: A home-made dc sputtering is characterized by cathode potential of 250-2500 V and sputtering gas pressures of (3.5×10-2 – 1.5) mbar. This paper studies in experiment the breakdown of argon, nitrogen, and oxygen in a uniform dc electric field at different discharge gaps and cathode potentials. Paschen curves for Argon, Nitrogen, and oxygen are obtained by measuring the breakdown voltage of gas within a stainless steel vacuum chamber with two planar, stainless steel electrodes. The Paschen curves in Ar, N2, and O2 gases show that the breakdown voltage between two electrodes is a function of pd (The product of the pressure inside the chamber and distance between the electrodes). Current-voltage characteristics visualization of the
... Show MoreThe electrical properties of thin film interdigital metalÂ
phthalocyanine - metal devices have been studied with regard to purity and electrode material . Devices utilising phthalocyanines ( H2 Pc ,
NiPc and CuPc) films with Au, Ag , Cu ' In and AI electrodes have been prepared with Pc layers fabricated from both as - supplied Pc powder and entrainer - subeimed material . The results indicate that
sublimed phthalocyanine with gold electrodes offers the best material
combination with regard to linearity , reversibility and reproducibility. Measurements of current &nbs
... Show MoreLocalization is an essential demand in wireless sensor networks (WSNs). It relies on several types of measurements. This paper focuses on positioning in 3-D space using time-of-arrival- (TOA-) based distance measurements between the target node and a number of anchor nodes. Central localization is assumed and either RF, acoustic or UWB signals are used for distance measurements. This problem is treated by using iterative gradient descent (GD), and an iterative GD-based algorithm for localization of moving sensors in a WSN has been proposed. To localize a node in 3-D space, at least four anchors are needed. In this work, however, five anchors are used to get better accuracy. In GD localization of a moving sensor, the algo
... Show MorePolyaniline organic Semiconductor polymer thin films have been prepared by oxidative polymerization at room temperature, this polymer was deposited on glass substrate with thickness 900nm, FTIR spectra was tested , the structural,optical and electrical properties were studied through XRD ,UV-Vis ,IR measurements ,the results was appeared that polymer thin film sensing to NH3 gas.
Photonic Crystal Fiber Interferometers (PCFIs) are greatly used
for sensing applications. This work presents the fabrication and
characterization of a relative humidity sensor based on Mach-
Zehnder Interferometer (MZI), which operates in reflection mode.
The humidity sensor operation based on the adsorption and
desorption of water vapour at the silica-air interface within the PCF.
The fabrication of this sensor is simple, it only includes splicing and
cleaving the PCF with SMF.PCF (LMA-10) with a certain length
spliced to SMF (Corning-28).
The spectrum of PCFI exhibits good sensitivity to humidity
variations. The PCFI response is observed for a range of humidity
values from (27% RH to 85% RH), the positi
The choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.
Dust and bird residue are problems impeding the operation of solar street lighting systems, especially in semi-desert areas, such as Iraq. The system in this paper was designed and developed locally using simple and inexpensive materials. The system runs automatically. It Connects to solar panels used in solar street lighting, and gets the required electricity from the same solar system. Solar panels are washed with dripping water in less than half a minute by this system. The cleaning period can also be controlled. It can also control, sensing the amount of dust the system operates. The impact of different types of falling dust on panels has also been studied. This was collected from different winds and studied their impact o
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the
... Show MoreIn this paper, the goal of proposed method is to protect data against different types of attacks by unauthorized parties. The basic idea of proposed method is generating a private key from a specific features of digital color image such as color (Red, Green and Blue); the generating process of private key from colors of digital color image performed via the computing process of color frequencies for blue color of an image then computing the maximum frequency of blue color, multiplying it by its number and adding process will performed to produce a generated key. After that the private key is generated, must be converting it into the binary representation form. The generated key is extracted from blue color of keyed image then we selects a c
... Show More