The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show MoreThis study aims at shedding light on the linguistic significance of collocation networks in the academic writing context. Following Firth’s principle “You shall know a word by the company it keeps.” The study intends to examine three selected nodes (i.e. research, study, and paper) shared collocations in an academic context. This is achieved by using the corpus linguistic tool; GraphColl in #LancsBox software version 5 which was announced in June 2020 in analyzing selected nodes. The study focuses on academic writing of two corpora which were designed and collected especially to serve the purpose of the study. The corpora consist of a collection of abstracts extracted from two different academic journals that publish for writ
... Show MoreImproving performance is an important issue in Wireless Sensor Networks (WSN). WSN has many limitations including network performance. The research question is how to reduce the amount of data transmitted to improve network performance?
The work will include one of the dictionary compression methods which is Lempel Ziv Welch(LZW). One problem with the dictionary method is that the token size is fixed. The LZW dictionary method is not very useful with little data, because it loses many byt
... Show MoreImproving" Jackknife Instrumental Variable Estimation method" using A class of immun algorithm with practical application
Cadmium has been known to be harmful to human healthy , manily Via contaminated drinking water , food supplies , tobacco and industrial pollutant . The aim of this study was to determine the toxicity of new Cadmium (II) complex ( Bis[ 5- ( P- nitrophenyl ) – ? 4 – Phenyl- 1,2,4- triazole -3- dithiocarbamatohydrazide] cadmium (II) Hydra ( 0.5) and compare it with anticancer drug cyclophosphamide ( CP) in female albino mice . This complex causes to several alterations in Enzymatic activity of Glutamate Pyruvate Transaminase (GPT) and Alkaline Phosphatase (ALP ) in three organs after the treatment of mice with different doses of a new cadmium (II) complex ( 0.09 / 0.25ml , 0.18/ 0.5ml and 0.25mg /0.7 ml /30 gm of mous
... Show MoreConvergence prop erties of Jackson polynomials have been considered by Zugmund
[1,ch.X] in (1959) and J.Szbados [2], (p =ï‚¥) while in (1983) V.A.Popov and J.Szabados [3]
(1 ï‚£p ï‚£ ï‚¥) have proved a direct inequality for Jackson polynomials in L
p-sp ace of 2ï°-periodic bounded Riemann integrable functions (f R) in terms of some modulus of
continuity .
In 1991 S.K.Jassim proved direct and inverse inequality for Jackson polynomials in
locally global norms (L
ï¤,p) of 2ï°-p eriodic bounded measurable functions (f Lï‚¥) in terms of
suitable Peetre K-functional [4].
Now the aim of our paper is to proved direct and inverse inequalities for Jackson
polynomials
Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show More