Preferred Language
Articles
/
gYaNrYYBIXToZYALmKNl
Strengthening of Continuous Reinforced Concrete Deep Beams with Large Openings Using CFRP Strips
...Show More Authors

To accommodate utilities in buildings, different sizes of openings are provided in the web of reinforced concrete deep beams, which cause reductions in the beam strength and stiffness. This paper aims to investigate experimentally and numerically the effectiveness of using carbon fiber reinforced polymer (CFRP) strips, as a strengthening technique, to externally strengthen reinforced concrete continuous deep beams (RCCDBs) with large openings. The experimental work included testing three RCCDBs under five-point bending. A reference specimen was prepared without openings to explore the reductions in strength and stiffness after providing large openings. Openings were created symmetrically at the center of spans of the other specimens to represent 40% of the overall beam depth. Moreover, finite elements (FE) analysis was validated using the experimental results to conduct a parametric study on RCCDBs strengthened with CFRP strips. The results confirmed reductions in the ultimate load by 21% and 7% for the un-strengthened and strengthened specimens, respectively, due to the large openings. Although the large openings caused reductions in capacities, the CFRP strips limited the deterioration by enhancing the specimen capacity by 17% relative to the un-strengthened one.

Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (7)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
Face-based Gender Classification Using Deep Learning Model
...Show More Authors

Gender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Iraqi Sentiment and Emotion Analysis Using Deep Learning
...Show More Authors

Analyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (23)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Analytical Approach for Load Capacity of Large Diameter Bored Piles Using Field Data
...Show More Authors

An analytical approach based on field data was used to determine the strength capacity of large diameter bored type piles. Also the deformations and settlements were evaluated for both vertical and lateral loadings. The analytical predictions are compared to field data obtained from a proto-type test pile used at Tharthar –Tigris canal Bridge. They were found to be with acceptable agreement of 12% deviation.

               Following ASTM standards D1143M-07e1,2010, a test schedule of five loading cycles were proposed for vertical loads and series of cyclic loads to simulate horizontal loading .The load test results and analytical data of 1.95

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
Serviceability of Post-fire RC Rafters with Openings of Different Sizes and Shapes
...Show More Authors

This study deals with the serviceability of reinforced concrete solid and perforated rafters with openings of different shapes and sizes based on an experimental study that includes 12 post-fire non-prismatic reinforced concrete beams (solid and perforated). Three groups were formed based on heating temperature (room temperature, 400 °C, and 700 °C), each group consisting of four rafters (solid, rafters with 6 and 8 trapezoidal openings, and rafter with eight circular openings) under static loading. A developed unified calculation technique for deflection and crack widths under static loading at the service stage has been provided, which comprises non-prismatic beams with or without opening exposed to flexure concentra

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Engineering
Non-Destructive Testing of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica
...Show More Authors

This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano Silica. Tap water has been used in mixing 12 of these mixtures, while the other 12 have been mixed using magnetic water. Nano Silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % were used. The results showed that the mixture containing 2.5%NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results showed that the fiber reinforced magnetic reactive powder concrete containing 2.5% NS (FRMRPCCNS)  has the higher bulk density, dynamic modulus of elasticity, ultrasonic pulse velocity  electrical resistivity and lesser absorption than fiber reinforced

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 04 2018
Journal Name
Civil Engineering Journal
Behavior of Reinforced Reactive Powder Concrete Two-Way Slabs under Static and Repeated Load
...Show More Authors

This paper studies the behavior of reinforced Reactive Powder Concrete (RPC) two-way slabs under static and repeated load. The experimental program included testing six simply supported RPC two-way slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. All the tested specimens were identical in their material properties, and reinforcement details except their steel fibers content. They were cast in three pairs, each one had a different steel fibers ratio (0.5 %, 1 %, and 1.5 %) respectively. In each pair, one specimen was tested under static load and the other under five cycles of repeated load (loading-unloading). Static test results revealed that increasing steel fibres volume fraction from 0.5 % to 1 % and from 1% to 1.5%,

... Show More
View Publication
Crossref (12)
Crossref
Publication Date
Fri Mar 18 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Detecting Deepfakes with Deep Learning and Gabor Filters
...Show More Authors

The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue

... Show More
View Publication
Scopus (8)
Crossref (1)
Scopus Clarivate Crossref