Preferred Language
Articles
/
gRblFooBVTCNdQwCz5Ds
Mean Monte Carlo Finite Difference Method for Random Sampling of a Nonlinear Epidemic System
...Show More Authors

In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained for each subpopulation as a vector distribution. The numerical outputs are tabulated, graphed, and compared with previous statistical estimations for 2013, 2015, and 2030, respectively. The solutions of FD and MMCFD are found to be in good agreement with small standard deviation of the means, and small measure of difference. The new MMCFD method is useful to predict intervals of random distributions for the numerical solutions of this epidemiology model with better approximation and agreement between existing statistical estimations and FD numerical solutions.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Advanced GIS-based Multi-Function Support System for Identifying the Best Route
...Show More Authors

Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
Voltage Profile Enhancing Using HVDC for 132KV Power System: Kurdistan Case Study
...Show More Authors

Nowadays power systems are huge networks that consist of electrical energy sources, static and lumped load components, connected over long distances by A.C. transmission lines. Voltage improvement is an important aspect of the power system. If the issue is not dealt with properly, may lead to voltage collapse.  In this paper, HVDC links/bipolar connections were inserted in a power system in order to improve the voltage profile. The load flow was simulated by Electrical Transient Analyzer Program (ETAP.16) program in which Newton- Raphson method is used. The load flow simulation studies show a significant enhancement of the power system performance after applying HVDC links on Kurdistan power systems. Th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Feature - Based Approach to Automatic Fixturing System Planning For Uniform Polyhedra Workpiece
...Show More Authors

This paper demonstrates the design of an algorithm to represent the design stages of fixturing system that serve in increasing the flexibility and automation of fixturing system planning for uniform polyhedral part. This system requires building a manufacturing feature recognition algorithm to present or describe inputs such as (configuration of workpiece) and built database system to represents (production plan and fixturing system exiting) to this algorithm. Also knowledge – base system was building or developed to find the best fixturing analysis (workpiece setup, constraints of workpiece and arrangement the contact on this workpiece) to workpiece.

View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
2018 Third Scientific Conference Of Electrical Engineering (scee)
An Intelligent Cognitive System Design for Mobile Robot based on Optimization Algorithm
...Show More Authors

View Publication
Scopus (7)
Scopus Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Fire
An Efficient Wildfire Detection System for AI-Embedded Applications Using Satellite Imagery
...Show More Authors

Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob

... Show More
View Publication
Scopus (23)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Updating the uniform accounting system in Iraq for installment sales transactions framework
...Show More Authors

Due to the intensity of competition between economic units that run the trade in durable goods had to pay a lot of these companies to follow the new selling methods aimed at attracting customers to be able to increase its sales and thereby increase their profits ,  these methods are installment sales, which had been in great demand by the customers with limited income, who provides them with the possibility of possession and use of such goods and to postpone the full amount of the payment to the seller, This transaction sales have grown even became installment sales system at the present time of the common types of sales transactions and deployed a lot in our environment and in many sectors of the market, and in some cases m

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
An IoT and Machine Learning-Based Predictive Maintenance System for Electrical Motors
...Show More Authors

The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com

... Show More
View Publication
Scopus (36)
Crossref (25)
Scopus Crossref
Publication Date
Sat Nov 30 2024
Journal Name
Asia Pacific Journal Of Molecular Biology And Biotechnology
Random amplified polymorphic DNA-based polymerase chain reaction is an effective tool to examine the genotoxic effects of some food colors
...Show More Authors

A large number of natural or synthetic dyes have been removed from both national and international lists of permitted food colors because of their mutagenic or carcinogenic activity. Therefore, this study aimed to use the Random Amplified Polymorphic DNA-Based Polymerase Chain Reaction (RAPD-PCR) assay as a feasible method to evaluate the ability of some food colors as genotoxin-induced DNA damage and mutations. Lactiplantibacillus plantarum was used as a bioindicator to determine the genotoxic effects by RAPD-PCR using M13 primer after treatment with some synthetic dyes currently used as food color additives, including Sunset Yellow, Carmoisine, and Tartrazine. Besides qualitative analysis, the bioinformatic GelJ software was used for clus

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Apr 04 2015
Journal Name
International Journal Of Advanced Technology In Engineering And Science
SYNTHESIS OF ZNO QUANTUM DOT BY SELF ASSEMBLY METHOD AND ZNO NANOROD BY HYDROTHERMAL METHOD
...Show More Authors

In this work, ZnO quantum dots (Q.dots) and nanorods were prepared. ZnO quantum dots were prepared by self-assembly method of zinc acetate solution with KOH solution, while ZnO nanorods were prepared by hydrothermal method of zinc nitrate hexahydrate Zn (NO3)2.6H2O with hexamethy lenetetramin (HMT) C6H12N4. The optical , structural and spectroscopic properties of the product quantum dot were studied. The results show the dependence of the optical properties on the crystal dimension and the formation of the trap states in the energy band gap. The deep levels emission was studied for n-ZnO and p-ZnO. The preparation ZnO nanorods show semiconductor behavior of p-type, which is a difficult process by doping because native defects.