In this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained for each subpopulation as a vector distribution. The numerical outputs are tabulated, graphed, and compared with previous statistical estimations for 2013, 2015, and 2030, respectively. The solutions of FD and MMCFD are found to be in good agreement with small standard deviation of the means, and small measure of difference. The new MMCFD method is useful to predict intervals of random distributions for the numerical solutions of this epidemiology model with better approximation and agreement between existing statistical estimations and FD numerical solutions.
A finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.
This paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on th
... Show MoreThe biometric-based keys generation represents the utilization of the extracted features from the human anatomical (physiological) traits like a fingerprint, retina, etc. or behavioral traits like a signature. The retina biometric has inherent robustness, therefore, it is capable of generating random keys with a higher security level compared to the other biometric traits. In this paper, an effective system to generate secure, robust and unique random keys based on retina features has been proposed for cryptographic applications. The retina features are extracted by using the algorithm of glowworm swarm optimization (GSO) that provides promising results through the experiments using the standard retina databases. Additionally, in order t
... Show MoreThis paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on the exp
... Show MoreOne of the important differences between multiwavelets and scalar wavelets is that each channel in the filter bank has a vector-valued input and a vector-valued output. A scalar-valued input signal must somehow be converted into a suitable vector-valued signal. This conversion is called preprocessing. Preprocessing is a mapping process which is done by a prefilter. A postfilter just does the opposite.
The most obvious way to get two input rows from a given signal is to repeat the signal. Two rows go into the multifilter bank. This procedure is called “Repeated Row” which introduces oversampling of the data by a factor of 2.
For data compression, where one is trying to find compact transform representations for a
... Show MoreThis research deals with the relationship between television advertising and buying random cosmetics, where we find that TV ads influence on the purchasing behavior of women, has conducted research in the field on a sample of women in the University of Baghdad, was a random sample taken from 150 different women in the age and social levels educational and cultural students and employees and teachers in order to sample representative be for the research community, and designed a questionnaire for this purpose form as a tool to collect data and information search and analyzed they answered the sample surveyed using a statistical program (spss) to extract percentages And correlation coefficients and testing square Kay , The study found Of w
... Show MoreThe aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.
Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.
We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).
The results proved that the (ANN) estimator is the best nonlinear estimator am
... Show MoreThe method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta meth
... Show More
This article co;nsiders a shrunken estimator ·Of Al-Hermyari· and
AI Gobuii (.1) to estimate the mean (8) of a normal clistributicm N (8 cr4) with known variance (cr+), when <:I guess value (So) av11il ble about the mean (B) as· an initial estrmate. This estimator is shown to be
more efficient tl1an the class-ical estimators especially when 8 is close to 8•. General expressions .for bias and MSE -of considered estitnator are gi 'en, witeh some examples. Nut.nerical cresdlts, comparisons and
conclusions ate reported.