The harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are built based on all available data in a mature oil field. The 1D model was used to estimate all mechanical rock properties, stress, and pore pressure. The minimum and maximum horizontal stress were determined using the poroelastic horizontal strain model. Furthermore, the mechanical properties were calibrated using drained triaxial and uniaxial compression tests. The pore pressure was tested using modular dynamic tester log MDT. The Mohr–Coulomb model was applied in the 4D model to calculate the stress distribution in the depleted reservoir. According to study wells, the target area has been classified into four main groups in Mishrif reservoir based on depletion: highly, moderately, slightly, and no depleted region. Also, the results showed that the units had been classified into three main categories based on depletion state (from above to low depleted): L1.1, L1.2, and M1. The mean average reduction in minimum horizontal stress magnitude was 322 psi for L1.1, 183.86 psi for L1.2, and 115.56 psi for M1. Thus, the lower limit of fracture pressure dropped to a high value in L1.1, which is considered a weak point. As a result of changing horizontal stress, the mud weight window became narrow.
In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes
Transforming the common normal distribution through the generated Kummer Beta model to the Kummer Beta Generalized Normal Distribution (KBGND) had been achieved. Then, estimating the distribution parameters and hazard function using the MLE method, and improving these estimations by employing the genetic algorithm. Simulation is used by assuming a number of models and different sample sizes. The main finding was that the common maximum likelihood (MLE) method is the best in estimating the parameters of the Kummer Beta Generalized Normal Distribution (KBGND) compared to the common maximum likelihood according to Mean Squares Error (MSE) and Mean squares Error Integral (IMSE) criteria in estimating the hazard function. While the pr
... Show MoreIn this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
Clean water supply is one of the major factors contributing significantly to society’s socio-economic transformation by improving living standards, health, and increasing productivity. It is imperative to plan and construct appropriate water supply systems in modern society, which supply various segments of society with safe drinking water according to their requirements to ensure adequate and quality water supply. In the current study, here was an attempt to develop a model for geographic information systems to manage the assets of the water distribution networks in the Karrada region and to evaluate the network geometrically, and from the results of the engineering analysis of the
In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th
... Show MoreThe optimization calculations are made to find the optimum properties of combined quadrupole lens consist of electrostatic and magnetic lenses to produce achromatic lens. The modified bell-shaped model is used and the calculation is made by solving the equation of motion and finding the transfer matrices in convergence and divergence planes, these matrices are used to find the properties of lens as the magnification and aberrations coefficients. To find the optimum values of chromatic and spherical aberrations coefficients, the effect of both the excitation parameter of the lens (n) and the effective length of the lens into account as effective parameters in the optimization processing
This paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreMetasurface polarizers are essential optical components in modern integrated optics and play a vital role in many optical applications including Quantum Key Distribution systems in quantum cryptography. However, inverse design of metasurface polarizers with high efficiency depends on the proper prediction of structural dimensions based on required optical response. Deep learning neural networks can efficiently help in the inverse design process, minimizing both time and simulation resources requirements, while better results can be achieved compared to traditional optimization methods. Hereby, utilizing the COMSOL Multiphysics Surrogate model and deep neural networks to design a metasurface grating structure with high extinction rat
... Show More