The harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are built based on all available data in a mature oil field. The 1D model was used to estimate all mechanical rock properties, stress, and pore pressure. The minimum and maximum horizontal stress were determined using the poroelastic horizontal strain model. Furthermore, the mechanical properties were calibrated using drained triaxial and uniaxial compression tests. The pore pressure was tested using modular dynamic tester log MDT. The Mohr–Coulomb model was applied in the 4D model to calculate the stress distribution in the depleted reservoir. According to study wells, the target area has been classified into four main groups in Mishrif reservoir based on depletion: highly, moderately, slightly, and no depleted region. Also, the results showed that the units had been classified into three main categories based on depletion state (from above to low depleted): L1.1, L1.2, and M1. The mean average reduction in minimum horizontal stress magnitude was 322 psi for L1.1, 183.86 psi for L1.2, and 115.56 psi for M1. Thus, the lower limit of fracture pressure dropped to a high value in L1.1, which is considered a weak point. As a result of changing horizontal stress, the mud weight window became narrow.
Deep drawing process to produce square cup is very complex process due to a lot of process parameters which control on this process, therefore associated with it many of defects such as earing, wrinkling and fracture. Study of the effect of some process parameters to determine the values of these parameters which give the best result, the distributions for the thickness and depths of the cup were used to estimate the effect of the parameters on the cup numerically, in addition to experimental verification just to the conditions which give the best numerical predictions in order to reduce the time, efforts and costs for producing square cup with less defects experimentally is the aim of this study. The numerical analysis is used to study
... Show MoreMany researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa
... Show MoreRecently The problem of desertification and vegetation cover degradation become an environmental global challenge. This problem could be summarized as as the land cover changes. In this paper, the area of Al- Muthana in the south of Iraq will be consider as one of Semi-arid lands. For this purpose, the Ladsat-8 images can be used with 15 m in spatial resolution. In order to over Achieve the work, many important ground truth data must be collected such as, rain precipitation, temperature distribution over the seasons, the DEM of the region, and the soil texture characteristics. The extracted data from this project are tables, 2-D figures, and GIS maps represent the distributions of vegetation areas, evaporation / precipitation, river levels
... Show MoreMethods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MoreThis paper deals with estimation of the reliability system in the stress- strength model of the shape parameter for the power distribution. The proposed approach has been including different estimations methods such as Maximum likelihood method, Shrinkage estimation methods, least square method and Moment method. Comparisons process had been carried out between the various employed estimation methods with using the mean square error criteria via Matlab software package.
Many problems were encountered during the drilling operations in Zubair oilfield. Stuckpipe, wellbore instability, breakouts and washouts, which increased the critical limits problems, were observed in many wells in this field, therefore an extra non-productive time added to the total drilling time, which will lead to an extra cost spent. A 1D Mechanical Earth Model (1D MEM) was built to suggest many solutions to such types of problems. An overpressured zone is noticed and an alternative mud weigh window is predicted depending on the results of the 1D MEM. Results of this study are diagnosed and wellbore instability problems are predicted in an efficient way using the 1D MEM. Suitable alternative solutions are presented
... Show MoreIn the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). T
... Show More