Most studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and behavior. A total of seven deep beam specimens with identical shear span-to-depth ratio, compressive strength of concrete, and amount of horizontal and vertical web reinforcement ratios have been tested under mid-span concentrated load applied monotonically until failure. The main variables studied were the effects of depth of the web openings and the prestressing location on deep beam performance. The test results showed that the enlargement in the size of web openings substantially reduces the element’s shear capacities while prestressing strands location above the web openings has more effect at increasing the element’s shear capacities. The numerical study considered three-dimensional finite element models that have been developed in Abaqus software to simulate and predict the performance of prestressed deep beams. The results of numerical simulations were in good agreement with the experimental ones.
Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreCo-crystals are new solid forms of drugs that could resolve more than one problem associated with drugs formulations like solubility, stability, bioavailability, mechanical and tableting properties. A preliminary theoretical study for estimating the possible bonding between the co-crystal components (paracetamol and naproxen) was performed using the ChemOffice program. The results revealed a high possibility for bonding between paracetamol and naproxen and indicated the ability of molecular mechanics study to predict the co-crystal design.
In this work, four different methods were used for the preparation of three different ratios 1:1, 2:1, and 1:2 of paracetamol:naproxen co-crystals. The four
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreWellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreMany of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreEvaluating treatment effect on interferon-alpha in female patients with systemic lupus erythematosus: a case-control study
The aim of the present study was to demonstrate the possible role of statins on the inflammatory biomarkers in patients with periodontal disease (PD) This cross-sectional study involved 74 patients with PD and/or dyslipidemia divided into Group A: 34 patients with PD (nonstatins users); Group B: 40 patients with PD (statins users); and Group C: 30 healthy controls. Total cholesterol (TC), triglyceride (TG) and high-density lipoprotein, C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and malondialdehyde (MDA) were measured . Blood pressure prolife and indices of PD were evaluated in each group. Statistical analysis was conducted by using SPSS version 20.0.
In the midst of rapid changes and difficultiesand the tough competition faced by the Iraqi banks, it has become necessary to focus on a significant aspect of administrative work; that is strategic planning and the key role of implementation within this process in improving the banking service quality. It has emerged as a critical and main competitive weapon for distinguishing the services provided by banks from each other in an effort to participate in increasing market share of the bank in question in question; in its growth, continuation and profit increase.
The research has addressed the relation between the independent variable (implementation within strategic planning), and the dependent variable (banking service quality and
... Show More