In the last years, new non-invasively laser methods were used to detect breast tumors for pre- and postmenopausal females. The methods based on using laser radiation are safer than the other daily used methods for breast tumor detection like X-ray mammography, CT-scanner, and nuclear medicine.
One of these new methods is called FDPM (Frequency Domain Photon Migration). It is based on the modulation of laser beam by variable frequency sinusoidal waves. The modulated laser radiations illuminate the breast tissue and received from opposite side.
In this paper the amplitude and the phase shift of the received signal were calculated according to the orig
... Show MoreBackground: Urinary incontinence (UI) is a common disorder that affects women of various ages and impacts all aspects of life. This condition negatively influences quality of life. Fractional CO2 laser (10600nm) is the recent method for treatment of stress urinary incontinence in women. Objectives: The purpose of the study was to evaluate the efficacy and safety of fractional CO2 laser (10600nm) in the treatment of female stress urinary incontinence. Materials & Methods: This study was done from July 2020 to February 2021conducted at the laser institute for postgraduate studies university of Baghdad, patients collected from a private clinic and the Department of
... Show MoreIn this work the analysis of laser beam profile system ,using a two dimensional CCD (Charge Coupled Device) arrays, is established. The system is capable of producing video graphics that give a two dimensional image of laser beam. The video graphics system creates color distribution that represent the intensity distribution of the laser beam or the energy profile of the beam. The software used is capable of analyzing and displaying the profile in four different methods that is , color code intensity contouring , intensity shareholding, intensity cross section along two dimension x-y, and three dimensional plot of the beam intensity given in the same display.
One of the troublesome duties in chemical industrial units is determining the instantaneous drop size distribution, which is created between two immiscible liquids within such units. In this work a complete system for measuring instantaneous droplet size is constructed. It consists of laser detection system (1mW He-Ne laser), drop generation system (turbine mixer unit), and microphotography system. Two immiscible liquids, water and kerosene were mixed together with different low volume fractions (0.0025, 0.02) of kerosene (as a dispersed phase) in water (as a continuous phase). The experiments were carried out at different rotational speed (1180- 2090 r.p.m) of the turbine mixer. The Sauter mean diameter of the drops was determined by la
... Show MoreThe microdrilling and nanodrilling holes are produced by a Q-switched Nd :YAG laser (1064 nm) interaction with 8009 Al alloy using nanoparticles. Two kinds of nanoparticles were used with this alloy. These nanoparticles are tungsten carbide (WC) and silica carbide (SiC). In this work, the microholes and nanoholes have been investigated with different laser pulse energies (600, 700 and 800)mJ, different repetition rates (5Hz and 10Hz) and different concentration of nanoparticles (90%, 50% and 5% ). The results indicate that the microholes and nanoholes have been achieved when the laser pulse energy is 600 mJ, laser repetition rate is 5Hz, and the concentration of the nanoparticles (for the two types of n
... Show MoreThis paper presents the theoretical and experimental results of drilling high density
polyethylene sheet with thickness of 1 mm using millisecond Nd:YAG pulsed laser. Effects of laser
parameters including laser energy, pulse duration and peak power were investigated. To describe and
understand the mechanism of the drilling process Comsol multiphysics package version 4.3b was used to
simulate the process. Both of the computational and experimental results indicated that the drilling
process has been carried out successfully and there are two phases introduced in the drilling process,
vaporization and melting. Each portion of these phases depend on the laser parameters used in the
drilling process
The Optical Fiber sensor based on the Surface Plasmon Resonance (SPR) technology has
been a successful performance sensing and presents high sensitivity. This thesis investigates the
performance of several structure of SPR sensor in field of refractive index and chemical
applications. A structure of Multi-Mode Fiber- Single Mode Fiber- Multi Mode Fiber (MMFSMF-MMF)
Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
Porous silicon (P-Si) has been produced in this work by photoelectrochemical (PEC) etching process. The irradiation has been achieved using diode laser of (2 W) power and 810 nm wavelength. The influence of various irradiation times on the properties of P-Si material such as P-Si layer thickness, surface aspect, pore diameter and the thickness of walls between pores as well as porosity and etching rate was investigated by depending on the scanning electron micrograph (SEM) technique and gravimetric measurements.