Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The ability of the tool in analyzing past data on historical prices combined with machine learning, orchestrate an appealing scene of predictions equipped with choices and information, users turn into the main characters in a financial discovery story conducted by the cryptocurrency system. The numerical results also support the effectiveness of the tool as highlighted by standout corresponding numbers such as lower RMSE value 150.96 for ETH and minimized normalized RMSE scaled down to under, which is. The quantitative successes underline the usefulness of this tool to give precise predictions and improve user interaction in an entertaining world of cryptocurrency investments.
Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a
... Show MoreBig data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an
... Show MoreIn this study NiO - CoO bimetallic catalysts are prepared with two Ni/Co ratios (70:30 and 80: 20) using the precipitation method of nitrate salts. The effects of Ni /Co ratio and preparation methods on the catalyst are analyzed by using different characterization techniques, i.e. atomic absorption (AA) , XRD, surface area and pore volume measurements according to the BET method . The results indicate that the best catalyst is the one containing the percentage of Ni :Co ( 70 : 30 ). Experiments indicate that the optimal conditions to prepare catalyst are stirring for three hours at a temperature of 60oC of the preparation , pH= (8-9) , calcination temperature at 400oC for two hours
... Show MoreThe glycated haemoglobin A1c(HbA1c) and Fasting blood glucose(FBG) effect on type1 diabetic pateints as a screening tests and as a gold standard for assessing glycemic control in subjects with diabetes were studied . Ninety one blood samples were collected in a peroid between June and the end of November 2012 at AL- Kindy Diabetic Center and Central Child Hospital,48 Females and 43 Males , aging between (11 month- 18 year), are divided into three groups, newly diagnosed , ongoing and healthy control group, with duration of disease between(1 day-3months) and (from birth-8 years) for newly diag
... Show MoreAbstract
In this research, a study of the behavior and correlation between sunspot number (SSN) and solar flux (F10.7) have been suggested. The annual time of the years (2008-2017) of solar cycle 24 has been adopted to make the investigation in order to get the mutual correlation between (SSN) and (F10.7). The test results of the annual correlation between SSN & F10.7 is simple and can be represented by a linear regression equation. The results of the conducted study showed that there was a good fit between SSN and F10.7 values that have been generated using the suggested mutual correlation equation and the observed data.
When the depth of stressed soil is rather small, Plate Load Test (PLT) becomes the most efficient test to estimate the soil properties for design purposes. Among these properties, modulus of subgrade reaction is the most important one that usually employed in roads and concrete pavement design. Two methods are available to perform PLT: static and dynamic methods. Static PLT is usually adopted due to its simplicity and time saving to be performs in comparison with cyclic (dynamic) method. The two methods are described in ASTM standard.
In this paper the effect of the test method used in PLT in estimation of some mechanical soil properties was distinguished via a series of both test methods applied in a same site. The comparison of
... Show More