Preferred Language
Articles
/
fxdHa5ABVTCNdQwC94nJ
MEASURING VIBRATION AT TRACTOR PLATFORM , STEERING WHEEL AND SEAT EFFECTIVE AMPLITUDE TRANSMISSIBILITY FACTOR DURING OPERATION TILLAGE
...Show More Authors

Field experiment conducted to measure vibrations on three axes longitudinal X, lateral Y and vertical Z on steering wheel, platform tractor and vertical vibration in seat tractor and seat effective amplitude transmissibility (SEAT) factor during operation tillage in silt clay loam soil with depth 18 cm in Baghdad. Split – split plot design under randomized complete block design with three replications least significant design 5 % used. Three factor were used in this experiment included two types of plows included chisel and disc plows which represented main plot, three tires inflation pressure was second factor included 1.1 ,1.8 and 2.7 bar, and three forward speeds of the tillage was third factor included 2.35 , 4.25 and 6.50 km/hr. Results showed disc plow recorded higher vibration values for three axes X,Y and Z on platform, steering wheel and vertical vibration seat tractor. No significant effect between chisel and disc plows in (SEAT) Factor. Tier pressure 2.7 bar recorded higher vibration values in all measurements. Speed tractor 6.50 km/hr recorded higher vibration values in all measurements. Vibration values increasing when increasing tiers inflation pressure and tractor speed. All interaction among treatments significant. Level of vibration in these experiment a cross legislated permissible vibration exposure limits in the world except the vibration transmitted to steering wheel and tractor seat during tillage under 1.1 bar and tractor speed 2.35 km/hr

Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Improvement of Soil by Using Polymer Fiber Materials Underneath Square Footing
...Show More Authors

The change in project cost, or cost growth, occurs from many factors, some of which are related to soil problem conditions that may occurs during construction and/or during site investigation period. This paper described a new soil improvement method with a minimum cost solution by using polymer fiber materials having a length of (3 cm) in both directions and (2.5 mm) in thickness, distributed in uniform medium dense .
sandy soil at different depths (B, 1.5B and 2B) below the footings. Three square footings has been used (5,7.5 and 10 cm) to carry the above investigation by using lever arm loading system design for such purposes.
These fibers were distributed from depth of (0.1B) below the footing base down to the investigated dep

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Engineering
Improvement of Shear Strength of Sandy Soil by Cement Grout with Fly Ash
...Show More Authors

       The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51) cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP) according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c); (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c), while the soil samples were dehydrated for one day

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Numerical Study of Piled Raft Foundation in Non-Homogeneous Soil Using Finite Element Method
...Show More Authors

This paper analyzes a piled-raft foundation on non-homogeneous soils with variable layer depth percentages. The present work aims to perform a three-dimensional finite element analysis of a piled-raft foundation subjected to vertical load using the PLAXIS 3D software. Parametric analysis was carried out to determine the effect of soil type and initial layer thickness. The parametric study showed that increasing the relative density from 30 % to 80 % of the upper sand layer and the thickness of the first layer has led to an increase in the ultimate load and a decrease in the settlement of piled raft foundations for the cases of sand over weak soil.  In clay over weak soil, the ultimate load of the piled raft foundation w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Bearing Capacity of Shallow Footing on Compacted Filling Dune Sand Over Reinforced Gypseous Soil
...Show More Authors

Existence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Fri Oct 01 2021
Journal Name
Journal Of Engineering
Some Geotechnical Properties of Plastic Soil Enhanced with Cement Dust
...Show More Authors

Plastic soil exhibits unfavorited geotechnical properties (when saturation), which causes negative defects to engineering structures. Different attempts (included various materials) were conducted to proffer solutions to such defects by experimenting in practical ways. On one hand, these attempts aimed to improve the engineering characteristics of plastic soil, and on the other hand, to use problematic waste materials as a stabilizer, like cement kiln dust, and to reduce environmental hazards. This paper explored the shrinkage, plasticity, and strength behavior of plastic soil enhanced with cement dust. The cement dust contents were 0%, 5%, 10%, 15% and 20% by dry weight of soil. An experimental series of shrinkage and p

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Evaluate the Rate of Pollution in Soil using Simulink Environment
...Show More Authors

       In this paper we design a Simulink model which can be evaluate the concentration of Copper, Lead, Zinc, Cadmium, Cobalt, Nickel, Crum and Iron. So, this model would be a method to determine the contamination levels of these metals with the potential for this contamination sources with their impact. The aim of using Simulink environment is to solve differential equations individually and as given data in parallel with analytical mathematics trends. In general, mathematical models of the spread heavy metals in soil are modeled and solve to predict the behavior of the system under different conditions.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
ANALYSIS OF GEOTEXTILE EMBANKMENT BY ANSYS
...Show More Authors

The major objectives of this research are to analyze the behavior of road embankments
reinforced with geotextiles constructed on soft soil and describe the finite element analysis by using
ANSYS program ver. (5.4). The ANSYS finite element program helps in analyzing the stability of
geo- structure (embankment) in varied application of geotextiles reinforcement to enhance the best
design for embankment.
The results of analysis indicate that one of the primary function of geotextiles reinforcement was to
reduce the horizontal displacement significantly. With the inclusions of reinforcement, the horizontal
displacement reduced by about (81%), while the vertical displacement reduced by (32%). The effect
of geotextiles

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Effect of Swelling Soil on Load Carrying Capacity of a Single Pile
...Show More Authors

Expansive soils are recognized by their swelling potential upon wetting due to the existence of some clay minerals such as  montmorillonite. An effective solution was found to avoid the danger of such soils by using piles. A single pile embedded in an elasto-plastic expansive soil has been analyzed by using one of the available software which is ABAQUS to investigate the effect of applied loads on pile’s top and investigate the effect of swelling soils on load carrying capacity of the pile. The result shows that as the pile is axially loaded at its top, the axial force along the pile gradually changes from (tension) to (compression) and the pile tends to move downward. The applied load needed to initiate pile’s settlement depend

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Terramechanics
Interaction of a rigid beam resting on a strong granular layer overlying weak granular soil: Multi-methodological investigations
...Show More Authors

In the geotechnical and terramechanical engineering applications, precise understandings are yet to be established on the off-road structures interacting with complex soil profiles. Several theoretical and experimental approaches have been used to measure the ultimate bearing capacity of the layered soil, but with a significant level of differences depending on the failure mechanisms assumed. Furthermore, local displacement fields in layered soils are not yet studied well. Here, the bearing capacity of a dense sand layer overlying loose sand beneath a rigid beam is studied under the plain-strain condition. The study employs using digital particle image velocimetry (DPIV) and finite element method (FEM) simulations. In the FEM, an experiment

... Show More
View Publication
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FINITE ELEMENT ANALYSIS OF STRIP FOOTING RESTING ON GIBSON-TYPE SOIL BY USING MATLAB
...Show More Authors

This research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.

View Publication Preview PDF
Crossref (1)
Crossref