This article describes how to predict different types of multiple reflections in pre-track seismic data. The characteristics of multiple reflections can be expressed as a combination of the characteristics of primary reflections. Multiple velocities always come in lower magnitude than the primaries, this is the base for separating them during Normal Move Out correction. The muting procedure is applied in Time-Velocity analysis domain. Semblance plot is used to diagnose multiples availability and judgment for muting dimensions. This processing procedure is used to eliminate internal multiples from real 2D seismic data from southern Iraq in two stages. The first is conventional Normal Move Out correction and velocity auto picking and stacking, and the second stage is muting. Many Common Depth Point gathers are tested to select the proper muting dimension, later on; the auto pick for the muted semblance is done for the whole 2D seismic data. The following step is to stack the Normal Move Out corrected data. Differences are calculated between the two stages of the process which greatly help to determine the eliminated multiple locations within the sedimentary secession. This will reduce the risk of interpreting these sequences as primary reflectors spatially within deep thin layers. Madagascar open source package is used in these processing steps. Madagascar open source package is very efficient, accurate, and easy to correct any part of the Python code used in the two stages of processing.
Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutant
... Show MoreToday, problems of spatial data integration have been further complicated by the rapid development in communication technologies and the increasing amount of available data sources on the World Wide Web. Thus, web-based geospatial data sources can be managed by different communities and the data themselves can vary in respect to quality, coverage, and purpose. Integrating such multiple geospatial datasets remains a challenge for geospatial data consumers. This paper concentrates on the integration of geometric and classification schemes for official data, such as Ordnance Survey (OS) national mapping data, with volunteered geographic information (VGI) data, such as the data derived from the OpenStreetMap (OSM) project. Useful descriptions o
... Show MorePharmaceuticals have been widely remaining contaminants in wastewater, and diclofenac is the most common pharmaceutical pollutant. Therefore, the removal of diclofenac from aqueous solutions using activated carbon produced by pyrocarbonic acid and microwaves was investigated in this research. Apricot seed powder and pyrophosphoric acid (45 wt%) were selected as raw material and activator respectively, and microwave irradiation technique was used to prepare the activated carbon. The raw material was impregnated in pyrophosphoric acid at 80◦C with an impregnation ratio of 1: 3 (apricot seeds to phosphoric acid), the impregnation time was 4 h, whereas the power of the microwave was 700 watts with a radiation time of 20 min. A series o
... Show MoreBackground: Thymus vulgaris is a plant rich in essential oils acclaimed for the management of oxidative stress and inflammation in the organs. Meanwhile, the heavy metal lead is widely distributed in nature and continued exposure to lead acetate causes reduced fertility.Objectives: The present study aimed to investigate the effects of T. vulgaris on ovarian and uterine structural and functional characteristics in female rats exposed to lead acetate. Methods: Three groups of 18 mature Wistar albino female rats (Rattus norvegicus), 15 weeks old and weighing between 200 and 210 g, were established and handled for 60 days as follows: Group A (control group) received 0.5 mL of distilled water (DW) daily; group B received 5 mg/kg body weight (BW
... Show MoreAn application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter
<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show More