The capacity factor is the main factor in assessing the efficiency of wind Turbine. This paper presents a procedure to find the optimal wind turbine for five different locations in Iraq based on finding the highest capacity factor of wind turbine for different locations. The wind data for twelve successive years (2009-2020) of five locations in Iraq are collected and analyzed. The longitudes and latitudes of the candidate sites are (44.3661o E, 33.3152o N), (47.7738o E, 30.5258o N), (45.8160o E, 32.5165o N), (44.33265o E, 32.0107o N) and (46.25691o E, 31.0510o N) for Baghdad, Basrah, Al-Kut, Al-Najaf, and Al-Nasiriyah respectively. The average wind velocity, standard deviation, Weibull shape and scale factors, and probability density function are calculated. According to quadratic model, the capacity factor for five wind turbines of different characteristics is calculated and compared with wind turbines in wind farm. The suitable wind turbine for the candidate sites is selected via matching between wind sites-wind turbines characteristics. The Gamesa G114-2.0MW model has highest capacity factor among other models for all selected sites whereas the Adwen AD 5-132 has lowest capacity factor. The Genetic algorithm is used to find the optimum cut-in and rated speeds of the wind turbine. The main objective of the algorithm to be maximized is the capacity factor of wind turbine. According to the practical ranges for cut-in and rated speeds of wind turbines, a proposed optimal value of cut-in and rated speeds are identified to ensure highest capacity factor for the studied wind sites in Iraq. MATLAB program is used to simulate the mathematical model of wind energy, wind turbine performance, and the capacity factor of wind turbines.
A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
The current study involves placing 135 boreholes drilled to a depth of 10 m below the existing ground level. Three standard penetration tests (SPT) are performed at depths of 1.5, 6, and 9.5 m for each borehole. To produce thematic maps with coordinates and depths for the bearing capacity variation of the soil, a numerical analysis was conducted using MATLAB software. Despite several-order interpolation polynomials being used to estimate the bearing capacity of soil, the first-order polynomial was the best among the other trials due to its simplicity and fast calculations. Additionally, the root mean squared error (RMSE) was almost the same for the all of the tried models. The results of the study can be summarized by the production
... Show MoreLow bearing capacity of weak soil under shallow footings represents one of construction problems.
Kaolin with water content converges to liquid limit used to represent the weak soil under shallow
footing prototype. On the other hand, fly ash, which can be defined as undesirable industrial waste
material, was used to improve the bearing capacity of the soft soil considered in this research. The soft
soil was prepared in steel box (36×36×25) cm and shallow square footing prototype (6×6) cm were
used .Group of physical and chemical tests were conducted on kaolin and fly ash. The soft soil was
improved by a bed of compacted fly ash placed under the footing with dimensions equal to that of
footing but with different de
A study has been performed to compare the beddings in which ductile iron pipes are buried. In water transmission systems, bends are usually used in the pipes. According to the prescribed layout, at these bends, unbalanced thrust forces are generated that must be confronted to prevent the separation of the bend from the pipe. The bed condition is a critical and important factor in providing the opposite force to the thrust forces in the restraint joint system. Due to the interaction between the native soil and the bedding layers in which the pipe is buried and the different characteristics between them. Also, the interaction with the pipe material makes it difficult to calculate the real forces opposite to the thrust forces and the way they
... Show MoreIn this paper, a theoretical study of the energy spectra and the heat capacity of one electron quantum dot with Gaussian Confinement in an external magnetic field are presented. Using the exact diagonalization technique, the Hamiltonian of the Gaussian Quantum Dot (GQD) including the electron spin is solved. All the elements in the energy matrix are found in closed form. The eigenenergies of the electron were displayed as a function of magnetic field, Gaussian confinement potential depth and quantum dot size. Explanations to the behavior of the quantum dot heat capacity curve, as a function of external applied magnetic field and temperature, are presented.
In this paper, a computational method for solving optimal problem is presented, using indirect method (spectral methodtechnique) which is based on Boubaker polynomial. By this method the state and the adjoint variables are approximated by Boubaker polynomial with unknown coefficients, thus an optimal control problem is transformed to algebraic equations which can be solved easily, and then the numerical value of the performance index is obtained. Also the operational matrices of differentiation and integration have been deduced for the same polynomial to help solving the problems easier. A numerical example was given to show the applicability and efficiency of the method. Some characteristics of this polynomial which can be used for solvin
... Show More