The aim of the current study was to develop a nanostructured double-layer for hydrophobic molecules delivery system. The developed double-layer consisted of polyethylene glycol-based polymeric (PEG) followed by gelatin sub coating of the core hydrophobic molecules containing sodium citrate. The polymeric composition ratio of PEG and the amount of the sub coating gelatin were optimized using the two-level fractional method. The nanoparticles were characterized using AFM and FT-IR techniques. The size of these nano capsules was in the range of 39-76 nm depending on drug loading concentration. The drug was effectively loaded into PEG-Gelatin nanoparticles (≈47%). The hydrophobic molecules-release characteristics in terms of controlled-release duration and dissolution efficiency were examined in various dissolution media, such as physiological pH (7.4) and simulated stomach fluid (3.4). Consequently, the optimized double-layer for hydrophobic molecules delivery system showed a gradual release of hydrophobic molecules in the and in physiological pH, indicating its novelty for using as a platform for hydrophobic molecules delivery.
The work concerned with studying the effect of (SiO2) addition as a
filler on the adhesive properties of (PVA). Samples were prepared as
sheets by using casting method. The mechanical properties showed
that increase in tensile strength from (34MPa) to (68MPa) when
(SiO2) added to (PVA). The adhesive strength showed that joint
properties depend upon specific adhesive characteristic of material
(PVA) and (SiO2\PVA)composites at different concentrations (1.5%,
2.5%, 3.5%, 4.5wt%), the cohesive strength of the adhesive material,
the joint design, and adherent type (Sponge Rubber(SR), Natural
leather (NL), Vulcanized Rubber(VR), and Cartoon). The results
proved the tensile strength increased with (SiO2) ratio, so
Background: Soft Laser has been advantageous in medical applications and is widely used in clinical practice. It is applied because it doesn’t cause the significant thermal effects or tissue hurt when irradiated. The blood response to low power laser radiation provides information about processes of laser radiation interaction with live creatures. Objective: The aim of the current work was to evaluate the laser-induced changes of in vitro erythrocyte sedimentation rate (ESR), mean corpuscular volume (MCV), and mean corpuscular hemoglobin concentration (MCHC) in patients with breast cancer by irradiating a human blood sample using a green laser and comparing its effects before and after irradiation with the same power density (100mW/c
... Show MoreWatermelon is known to be infested by multiple insect pests both simultaneously and in sequence. Interactions by pests have been shown to have positive or negative, additive or non additive, compensatory or over compensatory effects on yields. Hardly has this sort of relationship been defined for watermelon vis-à-vis insect herbivores. A 2-year, 2-season (4 trials) field experiments were laid in the Research Farm of Federal University Wukari, to investigate the interactive effects of key insect pests of watermelon on fruit yield of Watermelon in 2016 and 2017 using natural infestations. The relationship between the dominant insect pests and fruit yield were determined by correlation (r) and linear regression (simple and multiple) analys
... Show MoreThe toxicity of insecticide dichlorvos (90%) was tested in ovaries of mosquito fish using three sublethal concentrations (0.3, 0.6, 0.8 µg/L) and studied their effects on the means of body and ovary weights, gonadosomatic index, ovum size and ova number. Results showed that there was a significant (P<0.05) decrease in body and ovary weights, ovum size and ova count. However, there was no significant (P<0.05) difference in gonadosomatic index in treated groups with the three concentrations of dichlorvos compared with the control group. This study was added evidence on the ovular toxicity of dichlorvos concerning its effect on fish production as well as reduction in the means of productive offspring and their survival.
Ti6Al4V thin film was prepared on glass substrate by RF
sputtering method. The effect of RF power on the optical properties
of the thin films has been investigated using UV-visible
Spectrophotometer. It's found that the absorbance and the extinction
coefficient (k) for deposited thin films increase with increasing
applied power, while another parameters such as dielectric constant
and refractive index decrease with increasing RF power.