A detailed experimental study was devoted to the anodic oxidation of oxalic acid using manganese dioxide rotating cylinder anode with the objective to evaluate in a systematic way the effect on the oxalic acid oxidation process of several relevant parameters, including the presence of sodium chloride, the current density (J), the rotation speed, the temperature, and the initial concentration of oxalic acid. Thin manganese dioxide film on graphite substrate has been prepared by electrochemical oxidation from MnSO4-H2SO4 electrolyte. The morphology of this electrode was investigated by XRD, SEM, EDS and AFM techniques. The results show that a firm γ-structure of MnO2 film on graphite rod can be obtained successfully. The results indicate that the presence of NaCl has a vital role on the performance of the oxalic acid incineration process. Also current density has the major effect on the removal and current efficiencies. Positive effect of temperature on the removal and current efficiencies and negative effect of rotation speed were observed. The best adopted operative conditions were T = 50°C, J = 40 mA/cm2 and 200 rpm in the presence of 1g/l NaCl where a conversion of about 97% and a current efficiency close to 55% with energy consumption less than 28 kWh(kg of COD)−1 were obtained after four hours of electrolysis time. The findings of the present research validate that incineration of oxalic acid can be carried out successfully on MnO2 anode.
The most used material in the world after water is concrete, which depends mainly on its manufacture of cement leading to the emission of carbon dioxide (CO2), flying dust, and other greenhouse gasses (GHGs) resulting in pollution of the atmosphere. The emission of CO2 from cement production is approximately 5% of the global anthropogenic CO2. This research focuses on investigating the amount of CO2 emission from the Iraqi General Cement Company plants includes the cement factories of Kirkuk, Al-Qa’em, Fallujah, and Kubaisa, using the GHGs Protocol Measures Program (specifically cement based-method).
new six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show MoreAIM: To analyse our experiences in the management of traumatic retroperitoneal hematoma (RPH), highlighting the various challenges faced and to report on the outcome of these patients. METHODS: From May 2014 to May 2017, all patients with traumatic RPH who underwent surgical treatment were retrospectively analysed. The kind of injury, intraoperative findings, sites of hematoma, postoperative morbidity and the overall outcomes were recorded. RESULTS: Ninety-six patients; 53 with blunt trauma and 43 with penetrating injury, were included in this study. The centre-medial hematoma was observed in 24 (25%) patients, lateral hematoma in 46 (47.9%) patients, pelvic hematoma in 19 (19.8%) patients, and multiple zone hematomas in
... Show MoreThis research study the effect of Titanium dioxide on the tensile properties of
Polystyrene (PS) and Polycarbonate (PC) polymers. The stress – strain curve for pure PS
and pure PC, shows that Young modulus for PS is higher than Young modulus for PC,
because PS have higher ultimate strength than PC.
The addition of TiO2 to PS and PC will reduce the Young modulus and ultimate stress,
because the TiO2 particles will reduces or freeze the orientation of these molecular chain
and reduced the toughness of PC, while when the TiO2 were added to PS, the value of
toughness will be stabilized because TiO2 particles make these chains interlocked and the
mobility of the chains will be restrict.
In the present work experiments were conducted to study the effect of solid loading (1,5 and 9 vol.%) on the enhancement of carbon dioxide absorption in bubble column at various volumetric gas flow rate (0.75, 1 and 1.5 m3/h) and absorbent concentration (caustic soda)( 0.1,0.5 and 1 M ). Activated carbon and alumina oxide (Al2O3) are used as solid particles. The Danckwerts method was used to calculate interfacial area and individual mass transfer coefficients during absorption of carbon dioxide in a bubble column. The results show that the absorption rate was increased with increasing volumetric gas flow rate, caustic soda concentration and solid loading. Mass transfer coefficient and interfac
... Show MoreThe excellent specifications of electrodes coated with lead dioxide material make it of great importance in the industry. So it was suggested this study, which includes electrodeposition of lead dioxide on graphite substrate, knowing that the electrodeposition of lead dioxide on graphite studied earlier in different ways.
In this work the deposition process for lead dioxide conducted using electrolytic solution containing lead nitrate concentration 0.72 M with the addition of some other material to the solution, such as copper nitrate, nickel nitrate, sodium fluoride and cetyl trimethyl ammonium bromide, but only in very small concentrations. As for the operating conditions, the effect of change potential and temperature as well
... Show MoreIn this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indicates the broadening of diffraction peaks for nano
... Show More