A ‘locking-bolt’ demountable shear connector (LBDSC) is proposed to facilitate the deconstruction and reuse of steel-concrete composite structures, in line with achieving a more sustainable construction design paradigm. The LBDSC is comprised of a grout-filled steel tube and a geometrically compatible partially threaded bolt. The latter has a geometry that ‘locks’ the bolt in compatible holes predrilled on the steel flange and eliminates initial slip and construction tolerance issues. The structural behaviour of the LBDSC is evaluated through nine pushout tests using a horizontal test setup. The effects of the tube thickness, strength of concrete slab, and strength of infilled grout on the shear resistance, initial stiffness, and ductility of the LBDSC are assessed. The experimental results show that the LBDSC can achieve higher shear resistance and similar initial stiffness as compared to traditional welded studs. In addition, all tested LBDSCs exhibited slip capacities ranging from 14 to 32 mm and can be classified as ductile shear connectors according to Eurocode 4. A detailed finite element model was also created and found to be reliable to reproduce the experimental behaviour. Parametric studies were subsequently conducted using the validated model to study further parameters and generalise the experimental results. Due to the specific test setup, non-negligible uplift forces were generated in the connector and the potential implications are discussed.
In this work a chemical sensor was built by using Plane Wave Expansion (PWE) modeling technique by filling the core of 1550 hollow core photonic crystal fiber with chloroform that has different concentrations after being diluted with distilled water. The minimum photonic bandgap width is.0003 and .0005 rad/sec with 19 and 7 cells respectively and a concentration of chloroform that filled these two fibers is 75%.
Objective: To review and identify the major drivers for COVID-19 vaccine acceptance. Methods: A scoping review of studies of COVID-19 vaccine perceptions and barriers to using the COVID-19 vaccines. Two search engines, including PubMed and Google Scholar, were purposefully searched. Results: Eight studies from different countries were reviewed to categorize factors influencing people's acceptance of COVID-19 according to the Health Belief Model (HBM). Perceived susceptibility, and severity of the disease (COVID-19), in addition to perceived benefits of COVID-19 vaccination and "cues to action", can enhance vaccination acceptance. In contrast, perceived barriers to the COVID-19 vaccine can increase people's hesitancy to be vaccinated
... Show MoreBackground: Piezosurgery improved the split approach by making it safer, easier, and less prone to complications when treating extremely atrophic crests. Densah drills, with their unique design, expand the ridge by densifying bone in a reverse, non-cutting mode. Objective: To assess the effectiveness of sagittal piezosurgery, which involves cutting bone to the full implant depth and then expanding it using osseodensification drills. We use this technique to expand narrow alveolar bones and simultaneously place dental implants in the maxillary and mandibular arches. Methods: Fourteen patients received 31 dental implants. The maxillary arch received 19, and the mandible received 12 dental implants. This study will include patients who
... Show MoreMarriage is considered one of the strongest ties that links between two human beings , but after the evolutions that happened in our Arab communities and specifically in the Iraqi community , marriage through the internet websites appeared . this kind of marriage is considered one of the new phenomena that appeared in the present time in many societies. That was through internet websites like yahoo , Facebook and other websites that have chat features.
The Islamic sharia looks negatively at marriage through the internet announcing that this way is harmful for both the man and the woman
... Show MoreRecently, wireless charging based RF harvesting has interfered our lives [1] significantly through the different applications including biomedical, military, IoT, RF energy harvesting, IT-care, and RFID technologies. Wirelessly powered low energy devices become significantly essential for a wide spectrum of sensing applications [1]. Such devices require for low energy resources from sunlight, mechanical vibration, thermal gradients, convection flows or other forms of harvestable energy [2]. One of the emerging power extraction resources based on passive devices is harvesting radio frequency (RF) signals powers [3]–[5]. Such applications need devices that can be organized in very large numbers, so, making separate node battery impractical.
... Show MoreAs many expensive and invasive procedures are used for the diagnosis or follow-up of clinical conditions, the measurement of cell-free DNA is a promising, noninvasive method, which considers using blood, follicular fluid, or seminal fluid. This method is used to determine chromosomal abnormalities, genetic disorders, and indicators of some diseases such as polycystic ovary syndrome, pre-eclampsia, and some malignancies. Cell-free DNA, which are DNA fragments outside the nucleus, originates from an apoptotic process. However, to be used as a marker for the previously mentioned diseases is still under investigation. We discuss some aspects of using cell-free DNA measurements as an indicator or marker for pathological conditions.