In this study, gold nanoparticles (AuNPs) were synthesized using a plasma jet system at different exposure times. Using ultraviolet, visible spectra, X-ray diffraction, the nanoparticles were characterized (XRD). A Plasmon surface resonance concentrated at 530, 540, and 533 nm for the prepared AuNPs. The pattern of XRD showed that the extreme peaks of the film reflect crystalline existence. The face-centered cubic structure of the gold nanoparticles was prepared for all samples, with an average crystallite size of 25-40 nm. The effect of AuNPs in vivo on liver function levels was measured. For all doses, we notice an increase in the ranks of liver function in the blood during the period of dosing, and it begins to decrease when the dosing is left.
Abstract: Colloidal gold nanoparticles (ringworm Palm or in the form of paper willow) have been prepared from HAuCl4 containing aqueous solution by hot chemical reduction method. The colloidal gold nanoparticles were characterized by SEM, EDX, and UV-VIS absorption spectroscopy. It was found that the variation of reduction time from boiling point affects the size of the nanoparticles and also in chemical reduction approach the size of nanoparticles can be controlled by varying the amount of variation the volume of reductant material with respect to the volume of HAuCL4.
Background: Recently, Poly propylene fibers with and without plasma treatment have been used to reinforce heat cure denture base acrylic but, so far some of properties like tensile strength , wettability and wear resistance not evaluated yet, the aim of the study is to clarify the influence of incorporation of treated and untreated fibers on these properties. Materials and methods: Twenty one specimens were fabricated for every tested property(tensile strength, wear resistance and wettability) that classified into three groups(control, untreated poly propylene fibers reinforced specimens and Oxygen plasma treated group)and for each test sevens amples were used(n=7). Tensile strength was tested using Instron universal testing machine, wear
... Show MoreIn this paper the effect of nonthermal atmospheric argon plasma on the optical properties of the cadmium oxide CdO thin films prepared by chemical spray pyrolysis was studied. The prepared films were exposed to different time intervals (0, 5, 10, 15, 20) min. For every sample, the transmittance, Absorbance, absorption coefficient, energy gap, extinction coefficient and dielectric constant were studied. It is found that the transmittance and the energy gap increased with exposure time, and absorption. Absorption coefficient, extinction coefficient, dielectric constant decreased with time of exposure to the argon plasma
The influence of the grounded electrode area on the ignition voltage in capcitively coupled radio frequency discharge at 13.56 MHz in argon gas is studied experimentally. The results indicate a systematic decrease of the breakdown voltage with increasing grounded electrode area for the same pd value. Results show that the secondary ionization coefficient γ increases with the increase of grounded electrode area. Furthermore, results also the discharge current at the breakdown voltage increases almost linearly with the increase of electrode area suggesting an almost constant current density.
Scleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved
... Show MoreInfluence of metal nanoparticles synthesized by microorganisms upon soil-borne microscopic fungus Aspergillus terreus K-8 was studied. It was established that the metal nanoparticles synthesized by microorganisms affect the enzymatic activity of the studied culture. Silver nanoparticles lead to a decrease in cellulase activity and completely suppress the amylase activity of the fungus, while copper nanoparticles completely inhibit the activity of both the cellulase complex and amylase. The obtained results imply that the large-scale use of silver and copper nanoparticles may disrupt biological processes in the soil and cause change in the physiological and biochemical state of soil-borne microorganisms as well.
Nanoparticles have gained considerable interest in recent times for oil recovery purposes owing to significant capabilities in wettability alteration of reservoir rocks. Wettability is a key factor controlling displacement efficiency and ultimate recovery of oil. The present study investigates the influence of zirconium (IV) oxide (ZrO2) and nickel (II) oxide (NiO) nanoparticles on the wetting preference of fractured (oil-wet) limestone formations. Wettability was assessed through SEM, AFM and contact angle. The potentials of the nanoparticles to alter oil-wet calcite substrates water wet, was experimentally tested at low nanoparticle concentrations (0.004–0.05 wt%). Quite similar behaviour was observed for both nanoparticles at the same
... Show MoreNon-thermal atmospheric pressure plasma has emerged as a
new promising tool in medicine and biology. In this work, A DBD
system was built as a source of atmospheric pressure non-thermal
Plasma suitable for clinical and biological applications. E. coli and
staphylococcus spp bacteria were exposed to the DBD plasma for a
period of time as inactivation (sterilization) process. A series of
experiments were achieved under different operating conditions. The
results showed that the inactivation, of the two kinds of bacteria, was
affected (increasing or decreasing) according to operation conditions
because they affects, as expected, the produced plasma properties
according to those conditions.
In all applications and specially in real time applications, image processing and compression plays in modern life a very important part in both storage and transmission over internet for example, but finding orthogonal matrices as a filter or transform in different sizes is very complex and importance to using in different applications like image processing and communications systems, at present, new method to find orthogonal matrices as transform filter then used for Mixed Transforms Generated by using a technique so-called Tensor Product based for Data Processing, these techniques are developed and utilized. Our aims at this paper are to evaluate and analyze this new mixed technique in Image Compression using the Discrete Wavelet Transfo
... Show More