Human detection represents a main problem of interest when using video based monitoring. In this paper, artificial neural networks, namely multilayer perceptron (MLP) and radial basis function (RBF) are used to detect humans among different objects in a sequence of frames (images) using classification approach. The classification used is based on the shape of the object instead of depending on the contents of the frame. Initially, background subtraction is depended to extract objects of interest from the frame, then statistical and geometric information are obtained from vertical and horizontal projections of the objects that are detected to stand for the shape of the object. Next to this step, two ty
... Show MoreThis research aims to shed light on the reality of the process of rehabilitation of human resources for the implementation of electronic management practice in the ministry, and availability requirements of the application of electronic management and diagnosis of the most important stages and steps that can be followed in the process of transition towards electronic management to keep abreast of developments in the field of information technology, has been the application of this research in the Ministry of science and technology on a group of heads of departments and directors of the people in the departments of the Ministry through the use of case study method, which includes cohabitation field intervi
... Show MoreAd hoc networks are characterized by ease of setup, low costs, and frequent use in the corporate world. They ensure safety to the user and maintain the confidentiality of the information circulated. They also allow the user to address the cases of communication failure in areas subject to destruction of communication infrastructure. The proposed protocols in the ad hoc networks often build only one path to achieve communication between the nodes, due to the restrictions of battery run out and the movement of the nodes. This connection is often subject to a failure within a certain range. Thus, multiple alternate paths in ad hoc networks use a solution to failing node communications. In addition, when looking at the situation where interf
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show More<p> Traditionally, wireless networks and optical fiber Networks are independent of each other. Wireless networks are designed to meet specific service requirements, while dealing with weak physical transmission, and maximize system resources to ensure cost effectiveness and satisfaction for the end user. In optical fiber networks, on the other hand, search efforts instead concentrated on simple low-cost, future-proofness against inheritance and high services and applications through optical transparency. The ultimate goal of providing access to information when needed, was considered significantly. Whatever form it is required, not only increases the requirement sees technology convergence of wireless and optical networks but
... Show MoreThis paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias toward
... Show MoreThe huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.
This study investigates the role of Enterprise Resources Planning (ERP) systems in improving human resources management (HRM) processes. The rapid environmental changes led to increased demand on the ERP systems, which have changed the manual effort to technology-based processes, providing solutions focusing on the integration of all departments to achieve goals for the entire organization. HRM processes are mainly made up of two classes: strategic and operational HRM. An ERP system works to integrate both of them, making HRM processes more efficient, effective and feasible to provide support to the organization as a whole (inside and outside). In this article, a modest framework is proposed to describe HRM process integrity in relation to
... Show MoreThe current research aims to test the impact of the strategy of merger (as an explanatory variable) in human resources management practices (as a response variable), and the importance of the subject being an important topic that mimics the Iraqi environment, where has seen many mergers that have not been addressed by former researchers in the field. In addition, the future prospects carry many mergers, and the problem of research was the lack of understanding among departments in how to manage the integration and deal with it, on the basis of scientific which reflected negatively on the practices of human resources management, and the research was based on two main hypotheses Six sub-hypotheses emerge to explore the correlation
... Show MorePermeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show More