Banks face many of the various risks: which are of dangerous phenomena that cause the state achieved a waste of money and a threat to future development plans to be applied to reach the goals set by: prompting banks and departments to find appropriate solutions and fast: and it was within these solutions rely on Banking risk management and effective role in defining and identifying: measuring and monitoring risk and trying to control and take risks is expected to occur in order to encircle and make it in within acceptable limits: and try to avoid them in the future to reduce the losses that are likely to be exposed to the bank: and it began to emerge and dominate a lot of legislation that seeks to structure the year risk management and t
... Show MoreAcceptable Bit Error rate can be maintained by adapting some of the design parameters such as modulation, symbol rate, constellation size, and transmit power according to the channel state.
An estimate of HF propagation effects can be used to design an adaptive data transmission system over HF link. The proposed system combines the well known Automatic Link Establishment (ALE) together with variable rate transmission system. The standard ALE is modified to suite the required goal of selecting the best carrier frequency (channel) for a given transmission. This is based on measuring SINAD (Signal plus Noise plus Distortion to Noise plus Distortion), RSL (Received Signal Level), multipath phase distortion and BER (Bit Error Rate) fo
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreThe research aimed at identifying the effect of using constructive learning model on academic achievement and learning soccer dribbling Skill in 2nd grade secondary school students. The researcher used the experimental method on (30) secondary school students; 10 selected for pilot study, 20 were divided into two groups. The experimental group followed constructive learning model while the controlling group followed the traditional method. The experimental program lasted for eight weeks with two teaching sessions per week for each group. The data was collected and treated using SPSS to conclude the positive effect of using constructive learning model on developing academic achievement and learning soccer dribbling Skill in 2nd grade seconda
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreSmishing is a cybercriminal attack targeting mobile Short Message Service (SMS) devices that contains a malicious link, phone number, or email. The attacker intends to use this message to steal the victim's sensitive information, such as passwords, bank account details, and credit cards. One method of combating smishing is to raise awareness and educate users about the various tactics used by SMS phishers. But even so, this method has been criticized for becoming inefficient because smishing tactics are continually evolving. A more promising anti-smishing method is to use machine learning. This paper introduces a number of machine learning algorithms that can be used for detecting smishing. Furthermore, the differences and simil
... Show MoreThe recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach
... Show MoreThe majority of systems dealing with natural language processing (NLP) and artificial intelligence (AI) can assist in making automated and automatically-supported decisions. However, these systems may face challenges and difficulties or find it confusing to identify the required information (characterization) for eliciting a decision by extracting or summarizing relevant information from large text documents or colossal content. When obtaining these documents online, for instance from social networking or social media, these sites undergo a remarkable increase in the textual content. The main objective of the present study is to conduct a survey and show the latest developments about the implementation of text-mining techniqu
... Show More<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation
... Show More