This study is carried out to investigate the prevalence of Coxiella burnetii (C. burnetii) infections in cattle using an enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assay targeting IS1111A transposase gene. A total of 130 lactating cows were randomly selected from different areas in Wasit province, Iraq and subjected to blood and milk sampling during the period extended between November 2018 and May 2019. ELISA and PCR tests revealed that 16.15% and 10% of the animals studied were respectively positive. Significant correlations (P<0.05) were detected between the positive results and clinical data. Two positive PCR products were analyzed phylogenetically, named as C. burnetii IQ-No.5 and C. burnetii IQ-No.6; and then recorded in the National Center for Biotechnology Information (NCBI) under an accession numbers of MN473204.1 and MN473205.1. Comparative identity of the local strains with NCBI-BLAST strains/isolates revealed 97% similarity and 0.1-0.6% of total genetic mutations/changes. NCBI-BLAST Homology Sequence reported high significant identity (P<0.05) between the local, C. burnetii IQ-No.5 and C. burnetii IQ-No.6; strains and C. burnetii 3345937 (CP014354.1) Netherlands isolate at 99.10% and 99.06%, respectively. The current study concluded that the percentage of infected cows with coxiellosis is relatively high, and Coxiella should be listed as abortive pathogen. Therefore, additional studies should be performed including different animals, samples, and regions.
A band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).
The primary objective of this study is to monitor and collect data from the main
tributaries of Smaquli stream during rainfall storm events, which can be used to
establish relationship between suspended sediment concentration and discharge. The
Smaquli catchment is divided into two sub-catchments namely Sarwchawa and
Krosh with areas of 80.64 and 34.82 km2 respectively. Jali dam is built at watershed
outlet. Rainfall, stream discharge, and suspended sediment concentration are
monitored during ten rainfall storms in the water years (2012-2013) and (2013-
2014). Analysis of the data from the two sampling sites, shows two different
responses of suspended sediment concentrations. The Krosh sub-catchment reacts
rapi
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
Poliomyelitis is a viral disease caused by an enterovirus known as poliovirus and is well known for its role in causing paralysis in children, the virus is only infectious in humans and does pass into the central nervous system and cause various degrees of paralysis, poliovirus passes newcomer disabuse of suppliant to alms-man thumb the fecal-oral route infected persons still shed the virus in their stool allowing the virus to infect others. The main aim of this study was isolating and differentiation of poliovirus strains (Sabin virus) from the stool samples of children received polio vaccine TOPV and suffering from acute flaccid paralysis.
In this study use the cell culture system as the
... Show MoreThe texture analysis of cancer cells leads to a procedure to distinguish spatial differences within an image and extract essential information. This study used two test tumours images to determine cancer type, location, and geometric characteristics (area, size, dimensions, radius, etc.). The suggested algorithm was designed to detect and distinguish breast cancer using the segmentation-based threshold technique. The method of texture analysis Grey Level Size Zone method was used to extract 11 features: Small Zone Emphasis, Large Zone Emphasis, Low Grey Level Zone Emphasis, High Grey Level Zone Emphasis, Small Zone Low Grey Level Emphasis, Small Zone High Grey Level Emphasis, Large Zone Low Grey Level Emphasis, Large Zone High Gre
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreEnterobius vermicularis infection is considered as one of the important causes of anaemia and malnutrition among children. This topic has recently received an increased amount of attention. The objective of this study is to evaluate the demographical, anthropometrical, nutritional, and haematological status of E. vermicularis infection among children. This study was conducted in Al Diwaniyah province, south of Iraq, for the period of October 2020 to the end of January 2021. The study included 122 children from both genders (males, n= 61, and females, n=61) and their ages ranged between 1 and 14 years. Nutritional status, body mass index (BMI), BMI percentile, and weight- for- age Z score were evaluated for some particip
... Show More