Preferred Language
Articles
/
fReOXI8BVTCNdQwCnm6U
Study of the Halo Structure for Some Light Neutron-Rich Nuclei Using the Cosh Potential

The radial wave functions of the cosh potential within the three-body model of (Core+ 2n) have been employed to investigate the ground state properties such as the proton, neutron and matter densities and the associated rms radii of neutron-rich 6He, 11Li, 14Be, and 17B exotic nuclei. The density distributions of the core and two valence (halo) neutrons are described by the radial wave functions of the cosh potential. The obtained results provide the halo structure of the above exotic nuclei. Elastic electron scattering form factors of these halo nuclei are studied by the plane-wave Born approximation.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jul 01 2017
Journal Name
International Journal Of Modern Physics E
Nuclear structure investigation of some neutron-rich halo nuclei

The ground state proton, neutron and matter densities, the corresponding rms radii and charge form factors of a dripline nuclei 6He, 11Li, 12Be and 14Be have been studied via a three–body model of (Core + n + n). The core–neutron interaction takes the form of Woods-Saxon (WS) potential. The two valence neutrons of 6He, 11Li and 12Be interact by the realistic interaction of ZBMII while those of 14Be interact via the realistic interaction of VPNP. The core and valence (halo) density distributions are described by the single-particle wave functions of the WS potential. The calculated results are discussed and compared with the experimental data. The long tail performance is clearly noticed in the calculated neutron and matter density distr

... Show More
Scopus (13)
Crossref (9)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 01 2020
Journal Name
International Journal Of Modern Physics E
Investigation of halo structure of neutron rich 14B, 15C, 19C and 22N nuclei in the two body model

The two body model of (Core+n) within the radial wave functions of the cosh potential has been used to investigate the ground state features such as the proton, neutron and matter densities, the root mean square (RMS) nuclear proton, neutron, charge and mass radii of unstable neutron-rich 14B, 15C, 19C and 22N nuclei. The calculated results show that the two body model with the radial wave functions of the cosh potential succeeds in reproducing neutron halo in these nuclei.

Scopus (13)
Crossref (9)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jul 15 2020
Journal Name
Modern Physics Letters A
Nuclear matter distributions of neutron rich 6He, 11Li, 14Be and 17B halo nuclei studied by the Bear Hodgson potential

The radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee

... Show More
View Publication
Publication Date
Sat Oct 24 2020
Journal Name
Pramana
The neutron halo structure of 14B, 22N, 23O and 24F nuclei studied via the generalised Woods–Saxon potential

The radial wave functions of the generalise dWoods–Saxon (GWS) potential within the two-body model of (Core + n) have been used to study the ground-state density distributions of protons, neutrons and matter and the associated root mean square (rms) radii of neutron-rich 14B, 22N, 23O and 24F halo nuclei. The calculated results show that the radial wave functions of the generalised Woods–Saxon potential within the two-body model succeed in reproducing neutron halo in these exotic nuclei. Elastic electron scattering form factors for these nuclei are studied by combining the charge density distributions with the plane-wave Born approximation (PWBA).

View Publication
Publication Date
Sun Mar 06 2016
Journal Name
Baghdad Science Journal
The Nuclear Structure for Exotic Neutron-Rich of 42, 43, 45,47K Nuclei

In this paper the proton, neutron and matter density distributions and the corresponding root mean square (rms) radii of the ground states and the elastic magnetic electron scattering form factors and the magnetic dipole moments have been calculated for exotic nucleus of potassium isotopes K (A= 42, 43, 45, 47) based on the shell model using effective W0 interaction. The single-particle wave functions of harmonic-oscillator (HO) potential are used with the oscillator parameters b. According to this interaction, the valence nucleons are asummed to move in the d3f7 model space. The elastic magnetic electron scattering of the exotic nuclei 42K (J?T= 2- 2), 43K(J?T=3/2+ 5/2), 45K (J?T= 3/2+ 7/2) and 47K (J?T= 1/2+ 9/2) investigated t

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Study of the Nuclear Structure of some Neutron Rich Si Isotopes Using Shell Model with Skyrme Interaction

  Abstract

      The nuclear structure of 28-40Si isotopes toward neutron dripline has been investigated in framework of shell model with Skyrme-Hrtree-Fock method using certain Skyrme parameterizations. Moreover, investigations of static properties such as nuclear densities for proton, neutron, mass, and, charge densities with their corresponding rms radii, neutron skin thicknesses, binding energies, separation energies, shell gap, and pairing gap have been performed using the most recent Skyrme parameterization. The calculated results have been compared with available experimental data to identify which of these parameterizations introduced equivalent results with the ex

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Aug 31 2017
Journal Name
Pramana
Matter density distributions and elastic form factors of some two-neutron halo nuclei

The Skyrme–Hartree–Fock (SHF) method with MSK7 Skyrme parameter has been used to investigate the ground-state properties for two-neutron halo nuclei 6He, 11Li, 12Be and 14Be. These ground-state properties include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form factors. These calculations clearly reveal the long tail characterizing the halo nuclei as a distinctive feature.

Scopus (14)
Crossref (11)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Sep 01 2020
Journal Name
Iraqi Journal Of Physics
Study of the nuclear structure of halo nuclei 23O and 24F using the two-body model

The nuclear structure included the matter, proton and neutron densities of the ground state, the nuclear root-mean-square (rms) radii and elastic form factors of one neutron 23O and 24F halo nuclei have been studied by the two body model of  within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeed in reproducing neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy has been used to calculated the rms radii and reaction cross section of these nuclei.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Study of the proton halo structure of nuclei 23Al and 27P using the binary cluster model

The neutron, proton, and matter densities of the ground state of the proton-rich 23Al and 27P exotic nuclei were analyzed using the binary cluster model (BCM). Two density parameterizations were used in BCM calculations namely; Gaussian (GS) and harmonic oscillator (HO) parameterizations. According to the calculated results, it found that the BCM gives a good description of the nuclear structure for above proton-rich exotic nuclei. The elastic form factors of the unstable 23Al and 27P exotic nuclei and those of their stable isotopes 27Al and 31P are studied by the plane-wave Born approximation. The main difference between the elastic form factors of unstable nuclei and the

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Iraqi Journal Of Physics
Elastic Form Factors and Matter Density Distributions of Some Neutron-Rich Nuclei

The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related  radii are investigated using the two-body model of   within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is  calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c

... Show More
Crossref
View Publication Preview PDF