Objectives To tailor composites of polyethylene–hydroxyapatite to function as a new intracanal post for the restoration of endodontically treated teeth (ETT). Methods Silanated hydroxyapatite (HA) and zirconium dioxide (ZrO2) filled low-density polyethylene (LDPE) composites were fabricated by a melt extrusion process and characterised using infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The flexural strength and modulus were determined in dry state and post ageing in simulated body fluid and fractured surfaces analysed by SEM. The water uptake and radiographic appearance of the experimental composites were also measured and compared with a commercially known endodontic fibre post. Data were submitted to one-way analysis of variance (ANOVA) and post hoc Tukey multiple comparison tests at a level of significance P < 0.05. Results The LDPE/HA composites were structurally flexible and the HA content had a significant effect on the flexural strength and modulus. A univariate analysis of variance showed no significant differences in modulus and strength (P < 0.05) post accelerated ageing in simulated body fluid with very low water uptake. The melting point of the LDPE/HA composites ranged between 135 and 136 °C, which would facilitate removal in case of retreatment using conventional dental heating devices. The inclusion of HA reduced the damping thereby enhancing dimensional stability, whilst the addition of zirconia yielded a semi-translucent material that was sufficiently radiopaque, comparable to commercial posts, thus yielding aesthetic materials. Conclusions Innovative materials for restoration of ETT were developed; offering considerable benefits over the currently available material in terms of biomechanical and thermal properties. Clinical significance This study provided a new option for the development of a new intracanal post made up of functional and aesthetic composites.
For more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC
... Show MoreWastewater treatment plants operators prefer to make adjustments because they are more cost effective, to use the existing tank instead of building new ones. In this case an imported materials would be used as bio-loads to increase biomass and thus maintain efficiency as the next organic loading increases.In the present study, a local substance "pumice stone" was used as a biological carrier in the aeration tank, and the experiments were carried out in five stages: without biological carriers, filling ratio of 4%,10%,20%, and25% with pumice stone, the maximum organic loading at each stage (1.1884, 1.2144, 1.9432, 2.7768, 3.3141)g BOD /l.d respectively.Other experiments were carried out to determine the best filling ratio, the SS remova
... Show MoreUtilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re
... Show MoreIn this work, the Whittaker wave functions were used to study the nuclear density distributions and elastic electron scattering charge form factors for proton-rich nuclei and their corresponding stable nuclei (10,8B, 13,9C, 14,12N and 19,17F). The parameters of Whittaker’s basis were fixed to generate the experimental values of available size radii. The Whittaker basis was connected to harmonic-oscillator basis through boundary condition at match point. The nuclear shell model was opted with pure configuration for all studied nuclei to compute aforementioned studied quantities except 10
Jeder Lernende, der in der Fremdsprache Deutsch kommunizieren möchte, wird sich auch mit der deutschen Aussprache beschäftigen (müssen). Wer eine gute Aussprache hat, wird nicht nur oft und zu Recht bewundert, er hat es auch leichter, die deutsche Sprache zu verstehen, und er wird gut verstanden. Aussprachefehler beeinträchtigen die Kommunikation, sie führen zur Unverständlichkeit von Namen, Wörtern und Äußerungen oder Mißverständnissen, sie bewirken Ermüdung und Konzentrationsverluste und beeinträchtigen die Sprachverarbeitung durch Assoziationen und Emotionen, die beim Hörer entstehen können.’’[1]
Diese vorliegende Forschung befasst sich mit der Wic
... Show MoreThe transport of energy from the focal region when high power laser are focused onto
solid targets is of two dimensions axially in the direction of the laser and laterally in the
direction along the target surface perpendicular to the laser direction.
In this paper we present anew consideration to study lateral energy transport in plasma
produced by laser KrF λ=248nm and pulse time 20n sec. Targets are C, Al, Cu.we used
photo resist (negative type) which is mode localy and noticing the effective area as
afunction of lateralenergy transport