In accordance with epidemic COVID-19, the elevated infection rates, disinfectant overuse and antibiotic misuse what led to immune suppression in most of the population in addition to genotypic and phenotypic alterations in the microorganisms, so a great need to reevaluate the genetic determinants that responsible for bacterial community (biofilm) has been raised. A total of 250 clinical specimens were obtained from patients in Baghdad hospitals and streaked on Mannitol salt agar medium. The results revealed that 156 isolates appeared as round yellow colonies, indicating that they were mostly identified as Staphylococcus aureus from 250 specimens. The antibiotic resistance pattern of the isolates for methicillin 37.17% (n=58), Amoxicillin-Clavulanate 58.9% (n=92), chloramphenicol 6.4% (n=10), Tetracyclin 62.8% (n=98), ceftriaxone 53.8% (n=84), Ciprofloxacin 6.4% (n=10), Gentamicin 42.3% (n=66), levofloxacin 28.2% (n=44), Penicillin 33.3% (n=52). The results demonstrated that 49 isolates were multidurg resistance. The biofilm formation ability of MDR was detected and total of 120 S. aureus isolates (76.92 %) were found to be adherent to varied degrees. Only fifty isolates (32.05% of the total) were classified as strong biofilm producers. Twenty-three (14.75%) were moderate producers, and forty seven isolates (30.12%) were found to be weak producers.
With the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreSeveral Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreBreast cancer is the commonest cancer affecting women worldwide. Different studies have dealt with the etiological factors of that cancer aiming to find a way for early diagnosis and satisfactory therapy. The present study clarified the relationship between genetic polymorphisms of BRCA1 & BRCA2 genes and some etiological risk factors among breast cancer patients in Iraq. This investigation was carried out on 25 patients (all were females) who were diagnosed as breast cancer patients attended AL-Kadhemya Teaching Hospital in Baghdad and 10 apparently healthy women were used as a control, all women (patients and control) aged above 40 years. The Wizard Promega kit was used for DNA isolation from breast patients and normal individuals. B
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show More