In accordance with epidemic COVID-19, the elevated infection rates, disinfectant overuse and antibiotic misuse what led to immune suppression in most of the population in addition to genotypic and phenotypic alterations in the microorganisms, so a great need to reevaluate the genetic determinants that responsible for bacterial community (biofilm) has been raised. A total of 250 clinical specimens were obtained from patients in Baghdad hospitals and streaked on Mannitol salt agar medium. The results revealed that 156 isolates appeared as round yellow colonies, indicating that they were mostly identified as Staphylococcus aureus from 250 specimens. The antibiotic resistance pattern of the isolates for methicillin 37.17% (n=58), Amoxicillin-Clavulanate 58.9% (n=92), chloramphenicol 6.4% (n=10), Tetracyclin 62.8% (n=98), ceftriaxone 53.8% (n=84), Ciprofloxacin 6.4% (n=10), Gentamicin 42.3% (n=66), levofloxacin 28.2% (n=44), Penicillin 33.3% (n=52). The results demonstrated that 49 isolates were multidurg resistance. The biofilm formation ability of MDR was detected and total of 120 S. aureus isolates (76.92 %) were found to be adherent to varied degrees. Only fifty isolates (32.05% of the total) were classified as strong biofilm producers. Twenty-three (14.75%) were moderate producers, and forty seven isolates (30.12%) were found to be weak producers.
Significant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreBreast cancer is the commonest cancer affecting women worldwide. Different studies have dealt with the etiological factors of that cancer aiming to find a way for early diagnosis and satisfactory therapy. The present study clarified the relationship between genetic polymorphisms of BRCA1 & BRCA2 genes and some etiological risk factors among breast cancer patients in Iraq. This investigation was carried out on 25 patients (all were females) who were diagnosed as breast cancer patients attended AL-Kadhemya Teaching Hospital in Baghdad and 10 apparently healthy women were used as a control, all women (patients and control) aged above 40 years. The Wizard Promega kit was used for DNA isolation from breast patients and normal individuals. B
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreSilver nanoparticles synthesized by different species
Medulloblastomas and ependymomas are the most common malignant brain tumors in children. However genetic abnormalities associated with their development and prognosis remain unclear. Recently two gene fusions, KIAA1549–BRAF and SRGAP3–RAF1 have been detected in a number of brain tumours. We report here our development and validation of RT-RQPCR assays to detect various isoforms of these two fusion genes in formalin fixed paraffin embedded (FFPE) tissues of medulloblastoma and ependymoma. We examined these fusion genes in 44 paediatric brain tumours, 33 medulloblastomas and 11 ependymomas. We detected both fusion transcripts in 8/33, 5/33 SRGAP3 ex10/RAF1 ex10, and 3/33 KIAA1549 ex16/BRAF ex9, meduloblastomas but none in the 11 ep
... Show More