The present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb2+ and cadmium Cd2+ ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models. Various parameters were used to estimate the enrichment factors, concentration polarization modulus, and Péclet number. The pH values significantly affected the permeation flux of the Pb2+ solution but only had a slight effect on the Cd2+ solution. However, Cd2+ rejection was highly improved by increasing the pH value. The rejection of the PES membranes increased greatly as the heavy metal concentration rose, while the heavy metal concentration moderately affected the permeation flux. The maximum rejection of Pb2+ in a single-salt solution was 99%, 97.5%, and 98% for a feed solution containing 10 mg Pb/L at pH 6, 6.2, and 5.7, for PES1, PES2, and PES3, respectively. The maximum rejection of Cd2+ in single-salt solutions was 78%, 50.2%, and 44% for a feed solution containing 10 mg Cd/L at pH 6.5, 6.2, and 6.5, for PES1, PES2, and PES3, respectively. The analysis of the experimental data using the CFSD, CFSK, and CFFP models showed a good agreement between the theoretical and experimental results. The effective membrane thickness and active skin layer thickness were evaluated using the CFFP model, indicating that the Péclet number is important for determining the mechanism of separation by diffusion.
One of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show MoreGenerally fossil based fuels are used in internal combustion engines as an energy source.
Excessive use of fossil based fuels diminishes present reserves and increases the air pollution in
urban areas. This enhances the importance of the effective use of present reserves and/or to develop
new alternative fuels, which are environment friendly. Use of alternative fuel is a way of emission
control. The term “Alternative Gaseous Fuels” relates to a wide range of fuels that are in the
gaseous state at ambient conditions, whether when used on their own or as components of mixtures
with other fuels.
In this study, a single cylinder diesel engine was modified to use LPG in dual fuel mode to study
the performance, emis
PPSU hollow fiber nanofiltration membranes are prepared by applying two concentrations and various extrusion pressures according to the phase inversion method. Cross-sectional area and outer structures were characterized by using scanning electron microscope (SEM) and atomic force microscopy (AFM). In additional to the pore size distribution, either the mean roughness or the mean pore size of the PPSU hollow fiber surfaces was evaluated by AFM. It was found that the morphology of the PPSU fibers had both sponge-like and finger-like structures through different extrusion pressures and PPSU concentrations. The mean pore size and mean roughness for inner and outer surfaces were seen to be decreased with the increase of extrusion pressure at
... Show MoreComparative Analysis of Economic Policy Stability between Monarchical and Republican Systems: A Theoretical Fundamental Research
Computer-aided modeling and simulation software programs are essential tools
to predict how an optical communication component, link, or network will function
and perform. This paper aims to investigate the various effects on pulses
propagation in optical transmission systems utilizing the MATLAB program.
Dispersion and Attenuation effects are explored. The simulation of Gaussian pulses
propagation through single mode optical fiber, simplifies the design of optical
communication system and make the design process more efficient, less expensive,
and faster.
In this research, the performance of a two kind of membrane was examined to recovering the nutrients (protein and lactose) from the whey produced by the soft cheese industry in the General Company for Food Products inAbo-ghraab.Wheyare treated in two stages, the first including press whey into micron filter made of poly vinylidene difluoride (PVDF) standard plate type 800 kilo dalton, The membrane separates the whey to permeate which represent is the main nutrients and to remove the fat and microorganisms.The second stage is to isolate the protein by using ultra filter made of polyethylsulphone(PES)type plate with a measurement of 10,60 kilo dalton and the recovery of lactose in the form of permeate.
The results showed that the percen
Zernike Moments has been popularly used in many shape-based image retrieval studies due to its powerful shape representation. However its strength and weaknesses have not been clearly highlighted in the previous studies. Thus, its powerful shape representation could not be fully utilized. In this paper, a method to fully capture the shape representation properties of Zernike Moments is implemented and tested on a single object for binary and grey level images. The proposed method works by determining the boundary of the shape object and then resizing the object shape to the boundary of the image. Three case studies were made. Case 1 is the Zernike Moments implementation on the original shape object image. In Case 2, the centroid of the s
... Show MoreThe production and analysis of an optimal interference pattern for the optical fiber interferometer of a 193.1THz continuous laser source was simulated by comparing the spectral spectroscopy of the two arms of interferometer to be used as a heterodyne detection in sensing the body range, speed, and direction of movement by delaying the time between the arms.
The study showed that the fringe pattern can be sensed a range by the free spectral range FSR and the velocity by the fringe separation FS and the direction by the fringe spatial frequency FSF.
In this study, thermal characteristics of a two-phase closed heat pipe were investigated experimentally and theoretically. A two-phase closed heat pipe (copper container, Fluorocarbon FC-72 (C6F14) working fluid) was fabricated to examine its performance under the effect of input heat flux range of 250–1253 W/m2 , 70% fill charge ratio and various tilt angles. The temperature distribution along the heat pipe, input heat to evaporator section, and output heat from condenser were monitored. A comprehensive mathematical model was developed to investigate the steadystate heat transfer performance of a two-phase closed heat pipe. A steady state analytical model, is presented to determine important parameters on the design of two-phase close
... Show More