The idea of ech fuzzy soft bi-closure space ( bicsp) is a new one, and its basic features are defined and studied in [1]. In this paper, separation axioms, namely pairwise, , pairwise semi-(respectively, pairwise pseudo and pairwise Uryshon) - fs bicsp's are introduced and studied in both ech fuzzy soft bi-closure space and their induced fuzzy soft bitopological spaces. It is shown that hereditary property is satisfied for , with respect to ech fuzzy soft bi-closure space but for other mentioned types of separations axioms, hereditary property satisfies for closed subspaces of ech fuzzy soft bi-closure space.
In this paper, we introduce new conditions to prove that the existence and boundedness of the solution by convergent sequences and convergent series. The theorem of Krasnoselskii, Lebesgue’s dominated convergence theorem and fixed point theorem are used to get some sufficient conditions for the existence of solutions. Furthermore, we get sufficient conditions to guarantee the oscillatory property for all solutions in this class of equations. An illustrative example is included as an application to the main results.
The aim of this paper is to employ the fractional shifted Legendre polynomials (FSLPs) in the matrix form to approximate the fractional derivatives and find the numerical solutions of the one-dimensional space-fractional bioheat equation (SFBHE). The Caputo formula was utilized to approximate the fractional derivative. The proposed methodology applied for two examples showed its usefulness and efficiency. The numerical results showed that the utilized technique is very efficacious with high accuracy and good convergence.
Let Y be a"uniformly convex n-Banach space, M be a nonempty closed convex subset of Y, and S:M→M be adnonexpansive mapping. The purpose of this paper is to study some properties of uniform convex set that help us to develop iteration techniques for1approximationjof"fixed point of nonlinear mapping by using the Mann iteration processes in n-Banachlspace.
This paper concentrates on employing the -difference equations approach to prove another generating function, extended generating function, Rogers formula and Mehler’s formula for the polynomials , as well as thegenerating functions of Srivastava-Agarwal type. Furthermore, we establish links between the homogeneous -difference equations and transformation formulas.
This paper is concerned with the numerical blow-up solutions of semi-linear heat equations, where the nonlinear terms are of power type functions, with zero Dirichlet boundary conditions. We use explicit linear and implicit Euler finite difference schemes with a special time-steps formula to compute the blow-up solutions, and to estimate the blow-up times for three numerical experiments. Moreover, we calculate the error bounds and the numerical order of convergence arise from using these methods. Finally, we carry out the numerical simulations to the discrete graphs obtained from using these methods to support the numerical results and to confirm some known blow-up properties for the studied problems.
Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.
By taking into account various food components in the ecosystem, the research intends to develop a set of difference equations to simulate a plant-herbivore interaction of Holling Type II. We determine the local stability of the equilibrium points for the scenarios of extinction, semi-extinction (extinction for one species), and coexistence using the Linearized Stability Theorem. For a suitable Lyapunov function, we investigate theoretical findings to determine the global stability of the coexisting equilibrium point. It is clear that the system exhibits both Flip and Neimark-Sacker bifurcation under particular circumstances using the central manifold theorem and the bifurcation theory. Numerical simulations are
... Show MoreIn this paper, we introduce and study a new concept (up to our knowledge) named CL-duo modules, which is bigger than that of duo modules, and smaller than weak duo module which is given by Ozcan and Harmanci. Several properties are investigated. Also we consider some characterizations of CL-duo modules. Moreover, many relationships are given for this class of modules with other related classes of modules such as weak duo modules, P-duo modules.
This paper deals with a new Henstock-Kurzweil integral in Banach Space with Bilinear triple n-tuple and integrator function Ψ which depends on multiple points in partition. Finally, exhibit standard results of Generalized Henstock - Kurzweil integral in the theory of integration.
Abstract
This research’s goal is to restore and to revive the jurisprudence of Mother of Believers (Um alMuaamineen) “Um Salmah” "may God bless her", and to highlight her outstanding assimilation and understanding of religion and her conscious thought. The current research is a comparative scientific theoretical study represented in the comparison of jurisprudence of “Um Salamah” with Hadiths of fasting and pilgrimage rules as well as the duration mentioned in jurisprudence of for doctrines( 4 schools of thought )to identify these hadiths with the inclusion and discussion of their evidence.
The current research included two topics: the first one is to identify and introduce
... Show More