Carbonate matrix stimulation technology has progressed tremendously in the last decade through creative laboratory research and novel fluid advancements. Still, existing methods for optimizing the stimulation of wells in vast carbonate reservoirs are inadequate. Consequently, oil and gas wells are stimulated routinely to expand production and maximize recovery. Matrix acidizing is extensively used because of its low cost and ability to restore the original productivity of damaged wells and provide additional production capacity. The Ahdeb oil field lacks studies in matrix acidizing; therefore, this work provided new information on limestone acidizing in the Mishrif reservoir. Moreover, several reports have been issued on the difficulties encountered during the stimulation operation of the Ahdeb oil field, particularly for the development of the Mishrif reservoir. Since the new core flooding system is built to operate safely and straightforwardly. This study introduced the results of Matrix acidizing experiments, covering the most recent developments in linear core flooding. High-permeability flow pathways are created, and a longer and wider wormhole was generated at a high acid injection rate (6.67 cc/min). The acid efficiency curve yielded the lowest pore volume injected at the breakthrough of the PV_(bt-opt) is 2.73 and the v_(i-opt)=0.6 cm/min; thus, the optimum injection rate that results in an optimal possible wormhole and the least quantity of acid being used for this reservoir is 2.16 cc/min. This research evaluated the impact of matrix acidizing treatment on acoustic characteristics, which studies show are lacking or have never been investigated previously. Furthermore, in the assessment of geomechanical rock properties and elastic and petrophysical parameters before and after acid injection, one of the new concepts discovered during the lab experiment observation of the acoustic waveform before and after acid treatment for the tested rock sample is that the initial arrival time before acid treatment is 21.6 microseconds, with a delay of 31.2 microseconds attributed to the wormhole channel and mineral disintegration. CT-Scan applications in matrix acidizing were investigated in this research; additionally, a 3D view of plug samples was constructed to represent the wormhole extension via CT-processing software. A license of Stimpro Stimulation Software has been used to validate the experimental work to the field scale, making it the most comprehensive instrument for planning and monitoring matrix acid treatment and utilizing actual data to provide a far better knowledge of the well's reaction, with methods that represent the reality of what is happening in the reservoir before, during, and after matrix acid treatments, through the post-treatment skin factor which is the most often utilized statistic for analyzing stimulation treatments and relies on the geometry of the wormholed zone. The acid treatment evaluated for the well AD-12, primarily for the zone Mi4; matrix acid treatments can have their production behavior predicted or matched using the reservoir simulation and production analysis option, employing the numerical simulation license software Petrel (Schlumberger) and Rubis (KAPPA) to determine the efficacy of previous treatments and the economics associated with future treatments. The estimated oil gain volume and percentage for the Mi4 unit in Ad-12 using particularly skin value -3.97 computed from Stimpro software for real stimulation acid job, it is yield enhancement in production of oil gain volume 6154 barrels as well as 105% increase of gain percentage for three months after matrix acidizing.
A modification to cascaded single-stage distributed amplifier (CSSDA) design by using active inductor is proposed. This modification is shown to render the amplifier suitable for high gain operation in small on-chip area. Microwave office program simulation of the Novel design approach shows that it has performance compatible with the conventional distributed amplifiers but with smaller area. The CSSDA is suitable for optical and satellite communication systems.
Within this work, to promote the efficiency of organic-based solar cells, a series of novel A-π-D type small molecules were scrutinised. The acceptors which we designed had a moiety of N, N-dimethylaniline as the donor and catechol moiety as the acceptor linked through various conjugated π-linkers. We performed DFT (B3LYP) as well as TD-DFT (CAM-B3LYP) computations using 6-31G (d,p) for scrutinising the impact of various π-linkers upon optoelectronic characteristics, stability, and rate of charge transport. In comparison with the reference molecule, various π-linkers led to a smaller HOMO–LUMO energy gap. Compared to the reference molecule, there was a considerable red shift in the molecules under study (A1–A4). Therefore, based on
... Show MoreThis research consists of two parts, the first part concern with analyzing the collected data of BOD and COD values in discharge waste water from Al-Dora refinery during 2010 to find the relationship between these two variables The results indicates that there is a high correlation between BOD and COD when using a natural logarithm model (0.86 ln(COD)) with correlation coefficient of 0.98. This relationship is useful in predicting the BOD value using the COD value. The second part includes analyzing collected data from the same site in order to find a relationsip between BOD and other parameters COD, Phenol(phe), Temperature(T), Oil, Sulphat(SO4),pH and Total dissolved solids( TDS) discharged from the refinery. The results indicated that th
... Show MoreIn this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless communication applications. The proposed fractal antenna design is based on the second level tent transformation. The space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed at the same design frequency and using the same substrate
... Show MoreTwo different polyvinyl alcohol/polyvinyl chloride (PVA/PVC) hollow fiber composite nanofiltration membranes were prepared after PVC hollow fiber membranes were coated using dip-coating method with PVA aqueous solution, which was composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), and water [PVA/AEO9/water (4:0.5:95.5) wt%]. Effect of two different PVC hollow fiber immersion times in coating solution were studied. Cross-section, internal and external surfaces of the PVC hollow fibers and PVA/PVC composite nanofiltration membranes structures were characterized by scanning electron microscopy (SEM), pure water permeation flux and solutes rejection. It was found that, the coating layer thickness on the outer surface of the 19 wt% P
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show More