The aim of this study was to propose and evaluate an eco-epidemiological model with Allee effect and nonlinear harvesting in predators. It was assumed that there is an SI-type of disease in prey, and only portion of the prey would be attacked by the predator due to the fleeing of the remainder of the prey to a safe area. It was also assumed that the predator consumed the prey according to modified Holling type-II functional response. All possible equilibrium points were determined, and the local and global stabilities were investigated. The possibility of occurrence of local bifurcation was also studied. Numerical simulation was used to further evaluate the global dynamics and the effects of varying parameters on the asymptotic behavior of
... Show MoreA food chain model in which the top predator growing logistically has been proposed and studied. Two types of Holling’s functional responses type IV and type II have been used in the first trophic level and second trophic level respectively, in addition to Leslie-Gower in the third level. The properties of the solution are discussed. Since the boundary dynamics are affecting the dynamical behavior of the whole dynamical system, the linearization technique is used to study the stability of the subsystem of the proposed model. The persistence conditions of the obtained subsystem of the food chain are established. Finally, the model is simulated numerically to understand the global dynamics of the food chain un
... Show MoreIn this paper, a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results
In this paper a prey-predator model involving Holling type IV functional response
and intra-specific competition is proposed and analyzed. The local stability analysis of
the system is carried out. The occurrence of a simple Hopf bifurcation is investigated.
The global dynamics of the system is investigated with the help of the Lyapunov
function and poincare-bendixson theorem. Finally, the numerical simulation is used to
study the global dynamical behavior of the system. It is observed that, the system has
either stable point or periodic dynamics.
In this paper, an eco-epidemiological prey-predator system when the predator is subjected to the weak Allee effect, and harvesting was proposed and studied. The set of ordinary differential equations that simulate the system’s dynamic is constructed. The impact of fear and Allee’s effect on the system's dynamic behavior is one of our main objectives. The properties of the solution of the system were studied. All possible equilibrium points were determined, and their local, as well as global stabilities, were investigated. The possibility of the occurrence of local bifurcation was studied. Numerical simulation was used to further evaluate the global dynamics and understood the effects of varying parameters on the asymptotic behavior of t
... Show MoreIn this paper, an eco-epidemiological model with media coverage effect is proposed and studied. A prey-predator model with modified Leslie-Gower and functional response is studied. An -type of disease in prey is considered. The existence, uniqueness and boundedness of the solution of the model are discussed. The local and global stability of this system are carried out. The conditions for the persistence of all species are established. The local bifurcation in the model is studied. Finally, numerical simulations are conducted to illustrate the analytical results.
In this work, the dynamic behavior of discrete models is analyzed with Beverton- Holt function growth . All equilibria are found . The existence and local stability are investigated of all its equilibria.. The optimal harvest strategy is done for the system by using Pontryagin’s maximum principle to solve the optimality problem. Finally numerical simulations are used to solve the optimality problem and to enhance the results of mathematical analysis
Most studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and b
... Show More