Leishmaniosis is a tropical neglected parasitic disease that is endemic in many countries, including Middle East, with no existing effective vaccines. The bite of female sand-fly transmits the causative agent, Leishmania spp., to humans. High toxicity, resistance and treatment failure of the available chemotherapy against visceral leishmaniosis demands the investigation of new anti-leishmanial compounds. Lupeol is a form of triterpene isolated from several medicinal plants and possesses an antimicrobial property. In this study, cytotoxic effect of lupeol was screened against the mammalian amastigotes form and insect promastigote form of Leishmania donovani, following three cycles of incubation at different concentrations by MTT assay. Results revealed the in vitro anti-leishmanial effect of lupeol on both forms of the parasite where significant decline in promastigotes and amastigotes growth was observed. This was conducted along three times of follow up (24, 48, 72) hours, in comparison to the classical sodium stibogluconate treatment. Cell viability was calculated and the minimum IC50 was detected after 48 hours for amastigotes and 24 hours for promastigotes, 12.125 µM, 102.78 µM, respectively. Given the severity of visceral leishmaniosis and the toxicity of conventional chemotherapies, the anti-leishmanial activity of lupeol suggested a promising compound for additional clinical trials
The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T
... Show MoreA robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video str
... Show MoreBackground: Male infertility is a global concern and it tends to increase due to miscellaneous factors, such as environmental toxins and genetic and lifestyle choices. The aryl hydrocarbon receptor (AHR) has recently attracted attention due to its involvement in male infertility mechanisms and impact on sperm production and function. AHR, a versatile receptor expressed in various tissues, including the testes, regulates the genes involved in spermatogenesis. AHR activation is associated with cell cycle regulation and chromatin condensation during spermatogenesis. Objectives: This study aimed to investigate the influence of AHR activation on blood-testis barrier (BTB) integrity, focusing on the role of tight junction protein-1 (TJP1)
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
This research depends on the relationship between the reflected spectrum, the nature of each target, area and the percentage of its presence with other targets in the unity of the target area. The changes occur in Land cover have been detected for different years using satellite images based on the Modified Spectral Angle Mapper (MSAM) processing, where Landsat satellite images are utilized using two software programming (MATLAB 7.11 and ERDAS imagine 2014). The proposed supervised classification method (MSAM) using a MATLAB program with supervised classification method (Maximum likelihood Classifier) by ERDAS imagine have been used to get farthest precise results and detect environmental changes for periods. Despite using two classificatio
... Show More
The implementation of technology in the provision of public services and communication to citizens, which is commonly referred to as e-government, has brought multitude of benefits, including enhanced efficiency, accessibility, and transparency. Nevertheless, this approach also presents particular security concerns, such as cyber threats, data breaches, and access control. One technology that can aid in mitigating the effects of security vulnerabilities within e-government is permissioned blockchain. This work examines the performance of the hyperledger fabric private blockchain under high transaction loads by analyzing two scenarios that involve six organizations as case studies. Several parameters, such as transaction send ra
... Show MoreA remarkable correlation between chaotic systems and cryptography has been established with sensitivity to initial states, unpredictability, and complex behaviors. In one development, stages of a chaotic stream cipher are applied to a discrete chaotic dynamic system for the generation of pseudorandom bits. Some of these generators are based on 1D chaotic map and others on 2D ones. In the current study, a pseudorandom bit generator (PRBG) based on a new 2D chaotic logistic map is proposed that runs side-by-side and commences from random independent initial states. The structure of the proposed model consists of the three components of a mouse input device, the proposed 2D chaotic system, and an initial permutation (IP) table. Statist
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o