Preferred Language
Articles
/
fBb2j4oBVTCNdQwCuJ_G
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision based on the fusion of probabilities. Individually, the classifier based on PI achieved 93.1% accuracy, whereas the deep classifiers reached classification accuracies over 90% only in isolated cases. Overall, the average accuracy of the deep networks over the four corneal maps ranged from 86% (SfN) to 89.9% (AN). The classifier ensemble increased the accuracy of the deep classifiers based on corneal maps to values ranging (92.2% to 93.1%) for SqN and (93.1% to 94.8%) for AN. Including in the ensemble-specific combinations of corneal maps’ classifiers and PI increased the accuracy to 98.3%. Moreover, visualization of first learner filters in the networks and Grad-CAMs confirmed that the networks had learned relevant clinical features. This study shows the potential of creating ensembles of deep classifiers fine-tuned with a transfer learning strategy as it resulted in an improved accuracy while showing learnable filters and Grad-CAMs that agree with clinical knowledge. This is a step further towards the potential clinical deployment of an improved computer-assisted diagnosis system for KCN detection to help ophthalmologists to confirm the clinical decision and to perform fast and accurate KCN treatment.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Sentiment Analysis in Social Media using Machine Learning Techniques
...Show More Authors

Over the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (12)
Scopus Crossref
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Best Approximation in Modular Spaces By Type of Nonexpansive Maps
...Show More Authors

This paper presents results about the existence of best approximations via nonexpansive type maps defined on modular spaces. 

View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Investigating the effect of cartographic properties on updating cadastral maps
...Show More Authors
Abstract<p>Cadastral maps are the main documents of ownership and plots of land, as it contribute to preserving the property rights of individuals and institutions. It indicates the size and shape of each parcel and reveals geographic relationships that affect property value. The Iraqi cadastral maps are in old coordinate system AL-nahrwan 1934 and lambert conformal conic projection. Therefore these maps are old and unfit for use. The main objective of this paper is to investigate the effect of cartographic properties on updating cadastral maps. This depends on studying the effect of conversion the projection and the datum of the cadastral maps of the study area from (datum: nahrwan34, projection: lambert confo</p> ... Show More
View Publication
Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Photochemistry And Photobiology A: Chemistry
Improved photocatalytic degradation of methyl violet dye and pathogenic bacteria using g-C3N4 supported phosphotungstic acid heterojunction
...Show More Authors

Scopus (37)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Intrusion Detection System Using Data Stream Classification
...Show More Authors

Secure data communication across networks is always threatened with intrusion and abuse. Network Intrusion Detection System (IDS) is a valuable tool for in-depth defense of computer networks. Most research and applications in the field of intrusion detection systems was built based on analysing the several datasets that contain the attacks types using the classification of batch learning machine. The present study presents the intrusion detection system based on Data Stream Classification. Several data stream algorithms were applied on CICIDS2017 datasets which contain several new types of attacks. The results were evaluated to choose the best algorithm that satisfies high accuracy and low computation time.

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 07 2021
Journal Name
2021 14th International Conference On Developments In Esystems Engineering (dese)
Object Detection and Distance Measurement Using AI
...Show More Authors

View Publication
Scopus (15)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
Copy Move Forgery Detection Using Forensic Images
...Show More Authors

     Digital images are open to several manipulations and dropped cost of compact  cameras and mobile phones due to the robust image editing tools. Image credibility is therefore become doubtful, particularly where photos have power, for instance, news reports and insurance claims in a criminal court. Images forensic methods therefore measure the integrity of image  by apply different highly technical methods established in literatures. The present work deals with copy move forgery images of Media Integration and Communication Center Forgery (MICC-F2000) dataset for detecting and revealing the areas that have been tampered portion in the image, the image is sectioned into non overlapping blocks using Simple

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (4)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Southwest Jiaotong University
IMPROVED STRUCTURE OF DATA ENCRYPTION STANDARD ALGORITHM
...Show More Authors

The Internet is providing vital communications between millions of individuals. It is also more and more utilized as one of the commerce tools; thus, security is of high importance for securing communications and protecting vital information. Cryptography algorithms are essential in the field of security. Brute force attacks are the major Data Encryption Standard attacks. This is the main reason that warranted the need to use the improved structure of the Data Encryption Standard algorithm. This paper proposes a new, improved structure for Data Encryption Standard to make it secure and immune to attacks. The improved structure of Data Encryption Standard was accomplished using standard Data Encryption Standard with a new way of two key gene

... Show More
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Approach for New COVID-19 Cases Using Recurrent Neural Networks and Long-Short Term Memory
...Show More Authors

     This research aims to predict new COVID-19 cases in Bandung, Indonesia. The system implemented two types of deep learning methods to predict this. They were the recurrent neural networks (RNN) and long-short-term memory (LSTM) algorithms. The data used in this study were the numbers of confirmed COVID-19 cases in Bandung from March 2020 to December 2020. Pre-processing of the data was carried out, namely data splitting and scaling, to get optimal results. During model training, the hyperparameter tuning stage was carried out on the sequence length and the number of layers. The results showed that RNN gave a better performance. The test used the RMSE, MAE, and R2 evaluation methods, with the best numbers being  0.66975075, 0.470

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Simplified Novel Approach for Accurate Employee Churn Categorization using MCDM, De-Pareto Principle Approach, and Machine Learning
...Show More Authors

Churning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date.  A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref