Preferred Language
Articles
/
fBb2j4oBVTCNdQwCuJ_G
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision based on the fusion of probabilities. Individually, the classifier based on PI achieved 93.1% accuracy, whereas the deep classifiers reached classification accuracies over 90% only in isolated cases. Overall, the average accuracy of the deep networks over the four corneal maps ranged from 86% (SfN) to 89.9% (AN). The classifier ensemble increased the accuracy of the deep classifiers based on corneal maps to values ranging (92.2% to 93.1%) for SqN and (93.1% to 94.8%) for AN. Including in the ensemble-specific combinations of corneal maps’ classifiers and PI increased the accuracy to 98.3%. Moreover, visualization of first learner filters in the networks and Grad-CAMs confirmed that the networks had learned relevant clinical features. This study shows the potential of creating ensembles of deep classifiers fine-tuned with a transfer learning strategy as it resulted in an improved accuracy while showing learnable filters and Grad-CAMs that agree with clinical knowledge. This is a step further towards the potential clinical deployment of an improved computer-assisted diagnosis system for KCN detection to help ophthalmologists to confirm the clinical decision and to perform fast and accurate KCN treatment.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
A New Cipher Based on Feistel Structure and Chaotic Maps
...Show More Authors

Chaotic systems have been proved to be useful and effective for cryptography. Through this work, a new Feistel cipher depend upon chaos systems and Feistel network structure with dynamic secret key size according to the message size have been proposed. Compared with the classical traditional ciphers like Feistel-based structure ciphers, Data Encryption Standards (DES), is the common example of Feistel-based ciphers, the process of confusion and diffusion, will contains the dynamical permutation choice boxes, dynamical substitution choice boxes, which will be generated once and hence, considered static,

            While using chaotic maps, in the suggested system, called

... Show More
View Publication Preview PDF
Scopus (22)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2017
Journal Name
College Of Languages-university Of Baghdad
Skills and methods for learning a foreign language( strategies of education and learning foreign language)
...Show More Authors

There is no doubt that teachers are the leaders of positive changing in community where they directed the students and build their brains. In our current generation that characterized by accelerated technological development that communication changes, economic and politics, needs from the teacher an active leadership skills that match with the soul of our generation and contribute in confrontation the current challenges and the future challenges in the form that lead to create a conscious generation where they will be a basic brick for the future community where the listeners looking forward the education where they support the continuity communication of develop process, economy, scientifically and in all life fields. In our study we take

... Show More
View Publication
Publication Date
Wed Feb 15 2023
Journal Name
Full Text Book Of Minar Congress 7
EVALUATING THE CHANGE DETECTION OF(NDVI) FOR BABYLON CITY USING REMOTE SENSING AND GIS TECHNIQUES (2015-2020)
...Show More Authors

The normalized difference vegetation index (NDVI) is an effective graphical indicator that can be used to analyze remote sensing measurements using a space platform, in order to investigate the trend of the live green vegetation in the observed target. In this research, the change detection of vegetation in Babylon city was done by tracing the NDVI factor for temporal Landsat satellite images. These images were used and utilized in two different terms: in March 19th in 2015 and March 5th in 2020. The Arc-GIS program ver. 10.7 was adopted to analyze the collected data. The final results indicate a spatial variation in the (NDVI), where it increases from (1666.91 𝑘𝑚2) in 2015 to (1697.01 𝑘𝑚2)) in 2020 between the t

... Show More
View Publication
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees20
Change detection of the land cover for three decades using remote sensing data and geographic information system
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Processing of Polymers Stress Relaxation Curves Using Machine Learning Methods
...Show More Authors

Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jan 02 2023
Journal Name
Pakistan Heart Jornal
The Effect of the Strategy of Differentiated Education According to the Auditory Learning Style by Using Assistance in Learning the Back Kick (T-Chagi) for the Young Players of …
...Show More Authors

Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Photochemistry And Photobiology A: Chemistry
Improved photocatalytic degradation of methyl violet dye and pathogenic bacteria using g-C3N4 supported phosphotungstic acid heterojunction
...Show More Authors

Scopus (46)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (19)
Crossref (11)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Southwest Jiaotong University
IMPROVED STRUCTURE OF DATA ENCRYPTION STANDARD ALGORITHM
...Show More Authors

The Internet is providing vital communications between millions of individuals. It is also more and more utilized as one of the commerce tools; thus, security is of high importance for securing communications and protecting vital information. Cryptography algorithms are essential in the field of security. Brute force attacks are the major Data Encryption Standard attacks. This is the main reason that warranted the need to use the improved structure of the Data Encryption Standard algorithm. This paper proposes a new, improved structure for Data Encryption Standard to make it secure and immune to attacks. The improved structure of Data Encryption Standard was accomplished using standard Data Encryption Standard with a new way of two key gene

... Show More
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Automatic voice activity detection using fuzzy-neuro classifier
...Show More Authors

Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto

... Show More
View Publication Preview PDF
Scopus (7)
Scopus