Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision based on the fusion of probabilities. Individually, the classifier based on PI achieved 93.1% accuracy, whereas the deep classifiers reached classification accuracies over 90% only in isolated cases. Overall, the average accuracy of the deep networks over the four corneal maps ranged from 86% (SfN) to 89.9% (AN). The classifier ensemble increased the accuracy of the deep classifiers based on corneal maps to values ranging (92.2% to 93.1%) for SqN and (93.1% to 94.8%) for AN. Including in the ensemble-specific combinations of corneal maps’ classifiers and PI increased the accuracy to 98.3%. Moreover, visualization of first learner filters in the networks and Grad-CAMs confirmed that the networks had learned relevant clinical features. This study shows the potential of creating ensembles of deep classifiers fine-tuned with a transfer learning strategy as it resulted in an improved accuracy while showing learnable filters and Grad-CAMs that agree with clinical knowledge. This is a step further towards the potential clinical deployment of an improved computer-assisted diagnosis system for KCN detection to help ophthalmologists to confirm the clinical decision and to perform fast and accurate KCN treatment.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
Co-composting process can be acquired by combining organic fraction of municipal solid waste (OFMSW) with sewage sludge (SS) and mature compost (MC) as enhancement and bulking agent to overcome the problems of municipal solid waste and wastewater treatment plants besides the finally produced fertilizer usage for agriculture and horticulture. The effects of different mixture ratios of (OFMSW), (SS) and (MC) on the performance of composting process were investigated in this study. Piles of about 10 kg were prepared by mixing OFMSW, SS and MC in three different ratios (w/w) [OFMSW: SS: MC= 3:1:1, 3:2:1, and 3:3:1]. Results showed that the pile [3:1:1] was most beneficial to composting. The final compost products contained a
... Show MoreHuman Interactive Proofs (HIPs) are automatic inverse Turing tests, which are intended to differentiate between people and malicious computer programs. The mission of making good HIP system is a challenging issue, since the resultant HIP must be secure against attacks and in the same time it must be practical for humans. Text-based HIPs is one of the most popular HIPs types. It exploits the capability of humans to recite text images more than Optical Character Recognition (OCR), but the current text-based HIPs are not well-matched with rapid development of computer vision techniques, since they are either vey simply passed or very hard to resolve, thus this motivate that
... Show MoreIn modern hydraulic control systems, the trend in hydraulic power applications is to improve efficiency and performance. “Proportional valve” is generally applied to pressure, flow and directional-control valves which continuously convert a variable input signal into a smooth and proportional hydraulic output signal. It creates a variable resistance (orifice) upstream and downstream of a hydraulic actuator, and is meter in/meter out circuit and hence pressure drop, and power losses are inevitable. If velocity (position) feedback is used, flow pattern control is possible. Without aforementioned flow pattern, control is very “loose” and relies on “visual” feed back by the operator. At this point, we should examine how this valv
... Show MoreSolar hydrogen line emission has been observed at the frequency of 1.42 GHz (21 cm wavelength) with 3m radio telescope installed inside the University of Baghdad campus. Several measurements related to the sun have been conducted and computed from the radio telescope spectrometer. These measurements cover the solar brightness temperature, antenna temperature, solar radio flux, and the antenna gain of the radio telescope. The results demonstrate that the maximum antenna temperature, solar brightness temperature, and solar flux density are found to be 970 K, 49600K, and 70 SFU respectively. These results show perfect correlation with recent published studies.
Impressed current cathodic protection controlled by computer gives the ideal solution to the changes in environmental factors and long term coating degradation. The protection potential distribution achieved and the current demand on the anode can be regulated to protection criteria, to achieve the effective protection for the system.
In this paper, cathodic protection problem of above ground steel storage tank was investigated by an impressed current of cathodic protection with controlled potential of electrical system to manage the variation in soil resistivity. Corrosion controller has been implemented for above ground tank in LabView where tank's bottom potential to soil was manipulated to the desired set poi
... Show MoreInstitutions and companies are looking to reduce spending on buildings and services according to scientific methods, provided they reach the same purpose but at a lower cost. On this basis, this paper proposes a model to measure and reduce maintenance costs in one of the public sector institutions in Iraq by using performance indicators that fit the nature of the work of this institution and the available data. The paper relied on studying the nature of the institution’s work in the maintenance field and looking at the type of data available to know the type and number of appropriate indicators to create the model. Maintenance data were collected for the previous six years by reviewing the maintenance and financial dep
... Show More