Solar hydrogen line emission has been observed at the frequency of 1.42 GHz (21 cm wavelength) with 3m radio telescope installed inside the University of Baghdad campus. Several measurements related to the sun have been conducted and computed from the radio telescope spectrometer. These measurements cover the solar brightness temperature, antenna temperature, solar radio flux, and the antenna gain of the radio telescope. The results demonstrate that the maximum antenna temperature, solar brightness temperature, and solar flux density are found to be 970 K, 49600K, and 70 SFU respectively. These results show perfect correlation with recent published studies.
In This paper, sky radio emission background level associated with radio storm burst for the Sun and Jupiter is determined at frequency (20.1 MHz). The observation data for radio Jove telescope for the Sun and Jupiter radio storm observations data are loaded from NASA radio Jove telescope website, the data of Sunspot number are loaded from National Geophysical Data Center, (NGDC). Two radio Jove stations [(Sula, MT), (Lamy, NM)] are chose from data website for these huge observations data. For the Sun, twelve figures are used to determine the relation between radio background emission, and the daily Sunspot number. For Jupiter a twenty four figures are used to determine the relation between radio background emission and diffraction betwe
... Show MoreIn this paper, the rotation curve of the Milky Way galaxy has been determined using the observed HI emission line at a wavelength of 21 cm. Particularly, the Tangent Point Method was used in order to measure the rotational velocity and the distance to the center of the Milky Way. The measured rotation curve showed that the rotational velocity remains approximately constant at large distances from the center of the Galaxy. This is actually an evidence for the existence of dark matter in the halo of the Milky Way. If all the matter in the Milky Way is visible, then the behavior of the rotation curve of the galaxy should experience a Keplerian decline. The mass of the Milky Way within a radius of 15 kpc was also estimated to be ~ 1.65 × 10
... Show MoreThe aim of this paper is to measure the characteristics properties of 3 m radio telescope that installed inside Baghdad University campus. The measurements of this study cover some of the fundamental parameters at 1.42 GHz. These parameters concentrated principally on, the system noise temperature, signal to noise ratio and sensitivity, half power beam width, aperture efficiency, and effective area. These parameters are estimated via different radio sources observation like Cas-A, full moon, sky background, and solar drift scan observations. From the results of these observations, these parameters are found to be approximately 64 K, 1.2, 0.9 Jansky, 3.7°, 0.54, and 3.8 m2 respectively. The parameters values have vital affect to quantitativ
... Show MoreIn this research, study the effect of sunspots on electromagnetic radio signals when it passed through F layer. The evaluation for this effect is carried out on radio Jove telescope frequency (20.1MHz) observations result. Radio emission for Jupiter storm burst observations over 11 years (1999-2009) from Hawaii, USA station (about 37611observations must be attended), are used in this research.
Two data limitations are applied on number of observation for Hawaii station, first due station location, second due to the reception of telescope antenna. The number of observations are reduced to 337 due to these limitation, but the actual number that be detected by station telescope is only 20.A model for ionospherical effect ,only due to sun
The objective of this study is to select a suitable observing region at Baghdad location (44o 22' 48", 33o 16' 30") with low interference that may affect frequency of 1.42 GHz. Baghdad University Radio Telescope (BURT) is used in this study to determine a convenient region for observation in Baghdad sky. Different azimuths and elevations were chosen at different observations time. The results of this study showed that the best observations regions were located at azimuth (120o-160o) and (210o-260o). These regions included less sky temperature and estimated to be (42.8 to 163) K. The sky temperature model could be represente
... Show MoreThe paper presents an overview of theoretical aspects of small radio telescope antenna parameters. The basic parameters include antenna beamwidth, antenna gain, aperture efficiency, and antenna temperature. These parameters should be carefully studied since they have vital effects on astronomical radio observations. The simulations of antenna parameters were carried out to assess the capability and the efficiency of small radio telescopes to observe a point source at a specific frequency. Two-dimensional numerical simulations of a uniform circular aperture antenna are implemented at different radii. The small diameter values are chosen to be varied between (1-10) m. This study focuses on a small radio telescope with a diameter of 3 m sin
... Show MoreThe calibration of the three meter Baghdad University Radio Telescope (BURT) has been performed using two types of calibrations: Antenna Position calibration, and Detector calibration. The sun is used as a reference source to calibrate the telescope. The antenna position Azimuth (Az), and Elevation (El) are calibrate according to sun's azimuth and elevation in the date (11/10/2017; at time 10:19 AM). A calibration report is designed to illustrate the calibration parameters for each specific date and time. The detector calibration is representing a study for power spectrum response for the sun according to radio telescope frequency band (1.3 GHz – 1.5 GHz) with central frequency (1.42 GHz). Drift Scan function in the telescope's softwar
... Show MoreSolar activity monitoring is important in our life because of its direct or indirect influence on our life, not only on ionospheric communications. To study solar activity, researchers need measuring and monitoring instruments, these instruments are mostly expensive and are not available in all universities. In this paper, a very low frequency radio receiver had been designed and implemented with components available in most markets to support the researchers, college students, and radio astronomy amateurs with a minimum input voltage less than 100µV, an output voltage less than 135 m V with no distortion and an overall gain of 34dB. A comparison had been done between two circuit structures using a workbench software program and experim
... Show MoreThis research is concerned with the study of the projective plane over a finite field . The main purpose is finding partitions of the projective line PG( ) and the projective plane PG( ) , in addition to embedding PG(1, ) into PG( ) and PG( ) into PG( ). Clearly, the orbits of PG( ) are found, along with the cross-ratio for each orbit. As for PG( ), 13 partitions were found on PG( ) each partition being classified in terms of the degree of its arc, length, its own code, as well as its error correcting. The last main aim is to classify the group actions on PG( ).
This project introduces a prospective material for photonic laser applications. The material is olive oil which is classified as organic compound, having a good nonlinear optical properties candidate to be used in photonic applications. A high purity sample of olive oil has been used. The theoretical calculation to generate third harmonic wave using olive oil has been determine using MATLAB program. THG (λ=355nm) intensity has been determined at two cases of sample thicknesses 1mm and 10mm. The minimum threshold incident intensity to obtain THG intensity are equal Iω=7530 mW/cm2 at L=1mm and Iω= 6220 mW/cm2 at L=10mm. The possibility of generation of third harmonic in olive oil inside
... Show More