The predilection for 5G telemedicine networks has piqued the interest of industry researchers and academics. The most significant barrier to global telemedicine adoption is to achieve a secure and efficient transport of patients, which has two critical responsibilities. The first is to get the patient to the nearest hospital as quickly as possible, and the second is to keep the connection secure while traveling to the hospital. As a result, a new network scheme has been suggested to expand the medical delivery system, which is an agile network scheme to securely redirect ambulance motorbikes to the nearest hospital in emergency cases. This research provides a secured and efficient telemedicine transport strategy compatible with the vehicle social network (VSN). The proposed telemedicine method should find the best ambulance motorbike route for getting patients to the hospital as quickly as possible. This approach also enables the secure exchange of information between ambulance motorbikes and hospitals. Ant colony optimization (ACO) is utilized as a SWARM technique to expand the capabilities of 5G-wireless mesh networks to determine the best path. To secure communication, the secure socket layer (SSL), which is boosted once by the advanced encryption standard (AES), has achieved a new suggested scheme as a cybersecurity approach. According to the performance evaluation, this approach will determine the optimal route for motorbike ambulances. Additionally, this technique establishes a secure connection between ambulance motorbikes and the hospital. The study enhances telemedicine transportation.
This paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show MoreThe rapid development of telemedicine services and the requirements for exchanging medical information between physicians, consultants, and health institutions have made the protection of patients’ information an important priority for any future e-health system. The protection of medical information, including the cover (i.e. medical image), has a specificity that slightly differs from the requirements for protecting other information. It is necessary to preserve the cover greatly due to its importance on the reception side as medical staff use this information to provide a diagnosis to save a patient's life. If the cover is tampered with, this leads to failure in achieving the goal of telemedicine. Therefore, this work provides an in
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MorePhosphorus‐based Schiff base were synthesized by treating bis{3‐[2‐(4‐amino‐1.5‐dimethyl‐2‐phenyl‐pyrazol‐3‐ylideneamino)ethyl]‐indol‐1‐ylmethyl}‐phosphinic acid with paraformaldehyde and characterized as a novel antioxidant. Its corresponding complexes [(VO)2L(SO4)2], [Ni2LCl4], [Co2LCl4], [Cu2LCl4], [Zn2LCl4], [Cd2LCl4], [Hg2LCl4], [Pd2LCl4], and [PtL
... Show MoreThe key objective of the study is to understand the best processes that are currently used in managing talent in Australian higher education (AHE) and design a quantitative measurement of talent management processes (TMPs) for the higher education (HE) sector.
The three qualitative multi-method studies that are commonly used in empirical studies, namely, brainstorming, focus group discussions and semi-structured individual interviews were considered. Twenty