Titanium alloys are broadly used in the medical and aerospace sectors. However, they are categorized within the hard-to-machine alloys ascribed to their higher chemical reactivity and lower thermal conductivity. This aim of this research was to study the impact of the dry-end-milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. This research aims to study the impact of the dry-end milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. Also, it seeks to develop a new hybrid neural model based on the training back propagation neural network (BPNN) with swarm optimization-gravitation search hybrid algorithms (PSO-GSA). Full-factorial design of the experiment with L27 orthogonal array was applied, and three end-milling parameters (cutting speed, feed rate, and axial depth of cut) with three levels were selected (50, 77.5, and 105 m/min; 0.1, 0.15, and 0.2 mm/tooth; and 1, 1.5, and 2 mm) and investigated to show their influence on the obtained surface roughness. The results revealed that the surface roughness is significantly affected by the feed rate followed by the axial depth. A 0.49 µm was produced as a minimum surface roughness at the optimized parameters of 105 m/min, 0.1 mm/tooth, and 1 mm. On the other hand, a neural network having a single hidden layer with 1–20 hidden neurons, 3 input neurons, and 1 output neuron was trained with both PSO and PSO–GSA algorithms. The hybrid BPNN–PSO–GSA model showed its superiority over the BPNN–PSO model in terms of the minimum mean square error (MSE) that was calculated during the testing stage. The best BPNN–PSO–GSA hybrid model was the 3–18–1 structure, which reached the best testing MSE of 3.8 × 10−11 against 2.42 × 10−5 of the 3–8–1 BPNN–PSO hybrid model.
The research examines the mechanism of application of )ISO 21001: 2018( in the Energy Branch- Electromechanical Engineering at the University of Technology to achieve the quality of the educational service to prepare the branch to obtain the certificate of conformity with the requirements of) ISO 21001: 2018(, the necessary data were collected Depending on the (CHEKLIST) of (ISO 21001: 2018), field interviews and records of the concerned department, The researchers reached a number of results, the most prominent of which was the adoption of high quality leadership leaders and their willingness to implement the standard requirements, The university has a basic structure that qualifies it to implement the international standard, as
... Show MoreIn this study the as-deposited and heat treated at 423K of conductive blend graphene oxide (GO)/ poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) thin films was prepared with different PEDOT:PSS concentration (0, 0.25, 0.5, 0.75 and 1)w/w on pre-cleaned glass substrate by spin coater. The XRD analysis indicate the existence of the preffered peak (001) of GO around 2θ=8.24° which is domain in all GO/ PEDOT:PSS films characterized for GO, this result approve the good quality of the PEDOT:PSS dispersion in GO, this peak shifted to the lower 2θ with increasing PEDOT:PSS concentration and after annealing process. The scanning electron microscopy (SEM) images and atomic force microscopy (AFM) clearly sh
... Show MoreReducing of ethyl 4-((2-hydroxy-3-methoxybenzylidene)amino)benzoate (1) afford ethyl 4-((2-hydroxy-3-methoxybenzyl)amino)benzoate (2). Reaction of this compound with Vilsmeier reagent affords novel 2-chloro-[1,3] benzoxazine ring (3). The corresponding acid hydrazide of compound 3 was synthesized from reaction of compound (3) with hydrazine hydrate. Newly series of hydrazones (5a–i) were synthesized from reaction of acid hydrazide with various aryl aldehydes. Antibacterial activity of the hydrazones was secerned utilizing gram-negative and gram-positive bacteria. Compound (5b) and (5c) exhibited significant antibacterial ability against both gram-negative and gram-positive bacteria, while the compounds (5a) showed mild antibacteri
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreThis study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show MoreThe present work reports the performance of three types of polyethersulfone (PES) membrane in the removal of highly polluting and toxic lead Pb2+ and cadmium Cd2+ ions from a single salt. This study investigated the effect of operating variables, including pH, types of PES membrane, and feed concentration, on the separation process. The transport parameters and mass transfer coefficient (k) of the membranes were estimated using the combined film theory-solution-diffusion (CFSD), combined film theory-Spiegler-Kedem (CFSK), and combined film theory-finely-porous (CFFP) membrane transport models. Various parameters were used to estimate the enrichment factors, concentration polarization modulus, and Péclet number. The pH values signif
... Show MoreTwo field experiments were conducted during the spring season 2020 in Karbala governorate to study the effect of irrigation systems, irrigation intervals, biofertilizers and polymers on some characteristics of vegetative growth and potato production. The results showed that there were significant differences in the values of the average plant height due to the effect of the double interference between the irrigation system and the improvers, The height of potato plant under any irrigation system was superior when adding conditioners compared to the control treatment, as it reached 48.56, 58.00 and 64.33cm when adding polymer, biofertilizer, and polymers+ biofertilizers, respectively compared with the control treatment of 44.64cm in the surf
... Show MoreRadon is the most dangerous natural radioactive component affecting the human population, since it is a radioactive gas that results from the decomposition process of uranium deposits in soil, rocks, and water, and it is damaging both humans and the ecosystem. The radon concentrations and exhalation rate in soil samples from various locations were determined using a passive approach with a CR-39 (CR-39 is Columbia Resin #39; it is allyl diglycol carbonate C12H18O7) detector in Amiriya region in Baghdad Governorate. The average values of radon concentrations are ranged from 47.3 to 54.2 Bq·m−3. From the obtained results, we can conclude that the values of all studied locations are
Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show More