The research was conducted in a plastic greenhouse at the College of Agricultural Engineering Sciences, University of Baghdad - Jadiriyah Campus, during the 2021-2022 season, to study the effect of phosphorus, silicon, and citric acid on pepper plants using a factorial experiment design with three replicates. The first factor had three levels of phosphorus (0, 160, and 320 kg P2O5 per hectare), the second factor had three levels of potassium silicate (0, 75, and 100 kg per hectare), and the third factor had four levels of citric acid (0, 2, 4, and 6 kg per hectare). The statistical analysis showed that treatment P2S2C1 resulted in an increase in the main stem diameter (25.10 mm), treatment P3S3C1 led to an increase in the main branch diameter (16.10 mm), and treatment P3S3C2 showed an increase in the diameter of secondary and tertiary branches (13.50 mm and 8.90 mm, respectively). Treatment P2S3C1 resulted in an increased number of leaves and the dry weight of the total vegetative mass (1286.7 leaves and 415.0 g plant-1 respectively). Treatment P3S2C4 led to an increase in the dry weight of roots (25.47 g plant-1), treatment P2S3C4 showed an increased number of fruits (48.34 fruits plant-1), and treatment P3S3C4 resulted in an increased total yield (4.87 tons greenhouse-1).
This research presents a study for precipitating phosphorus (as phosphate ion) from simulated wastewater (5ppm initial concentration of phosphorus) using calcium hydroxide Ca(OH)2 solution. The removal of phosphorus by Ca (OH)2 solution is expected to be very effective since the chemical reaction is of acid-base type but Ca(OH)2 forms complex compound with phosphate ions called. Hydroxyapatite Ca5 (PO4)3OH. hydroxyapatite is slightly soluble in water. This research was directed towards sustainable elements as phosphorus. Kinetics of the dissolution reaction of hydroxyapatite was investigated to find the best factors to recover phosphorus. The effect of con
... Show MoreA variety of oxides were examined as additives to a V2O5/Al2O3 catalyst in order to enhance the catalytic performance for the vapor phase oxidation of toluene to benzoic acid. It was found that the modification with MoO3 greatly promoted the little reaction leading to improve catalyst performance in terms of toluene conversion and benzoic acid selectivity. The effect of catalyst surface area, catalyst promoters, reaction temperature, O2/toluene, steam/toluene, space velocity, and catalyst composition to catalyst performance were examined in order to increase the benzoic acid selectivity and yield.
This study investigates the impacts of climate change (CC) on the emergence and proliferation of fungal pathogens, with a particular focus on global food security and the potential of medicinal plants and their by-products as sustainable mitigation strategies. Through a systematic literature review of articles published up to 2024, we analyze how CC exacerbates the spread and severity of fungal diseases in crops, leading to significant agricultural losses and threats to food availability. The findings highlight that, alongside conventional approaches such as genetic resistance and precision farming, bioactive compounds derived from medicinal plants and their by-products offer promising, eco-friendly alternatives for the management of fungal
... Show MoreThis experiment was conducted in the orchard of the Department of Horticulture,college of Agriculture,Baghdad University during the growing season of 2007 To study the effects of spray with three concentration of cultar(0,500,1000 mg.L-1) ,tow concentration of K2SO4(0,5g.L-1), and salinity of irrigation water with three concentration (1,2,3dS.m-1) on some characteristics of vegetative growth of two cultivars of apricot trees (Labib1 and Zienni).The age of trees was four years .The tree grafted on original of seed apricot . Afactorial trail was carry out according to randomized complete block design with arrangement of split-split with three replications. Salinity of irrigation water took main plot, potassium took sub plot and cultar took s
... Show More