Preferred Language
Articles
/
excl7I0BVTCNdQwCMSnL
Minimizing Costs of Transportation Problems Using the Genetic Algorithm
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Mon Jan 13 2020
Journal Name
Day 3 Wed, January 15, 2020
Numerical Simulation of Gas Lift Optimization Using Genetic Algorithm for a Middle East Oil Field: Feasibility Study
...Show More Authors
<p>Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t</p> ... Show More
View Publication
Scopus (15)
Crossref (7)
Scopus Crossref
Publication Date
Thu Sep 08 2022
Journal Name
Al-khwarizmi Engineering Journal
Performance Prediction in EDM Process for Al 6061 Alloy Using Response Surface Methodology and Genetic Algorithm
...Show More Authors

The Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue May 01 2012
Journal Name
2012 Second International Conference On Digital Information And Communication Technology And It's Applications (dictap)
The compact Genetic Algorithm for likelihood estimator of first order moving average model
...Show More Authors

Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results

... Show More
View Publication
Scopus (5)
Scopus Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Application of the Holonic Manufacturing System using the Genetic Algorithm : Case Study in Lab 7 of the General Company for the Leather Industry
...Show More Authors

The study aims to achieve several objectives, including follow-up scientific developments and transformations in the modern concepts of the Holistic Manufacturing System for the purpose of identifying the methods of switching to the entrances of artificial intelligence, and clarifying the mechanism of operation of the genetic algorithm under the Holonic Manufacturing System, to benefit from the advantages of systems and to achieve the maximum savings in time and cost of machines Using the Holistic Manufacturing System method and the Genetic algorithm, which allows for optimal maintenance time and minimizing the total cost, which in turn enables the workers of these machines to control the vacations in th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
The Use Of Genetic Algorithm In Estimating The Parameter Of Finite Mixture Of Linear Regression
...Show More Authors

The estimation of the parameters of linear regression is based on the usual Least Square method, as this method is based on the estimation of several basic assumptions. Therefore, the accuracy of estimating the parameters of the model depends on the validity of these hypotheses. The most successful technique was the robust estimation method which is minimizing maximum likelihood estimator (MM-estimator) that proved its efficiency in this purpose. However, the use of the model becomes unrealistic and one of these assumptions is the uniformity of the variance and the normal distribution of the error. These assumptions are not achievable in the case of studying a specific problem that may include complex data of more than one model. To

... Show More
View Publication
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Employment of the genetic algorithm in some methods of estimating survival function with application
...Show More Authors

Intended for getting good estimates with more accurate results, we must choose the appropriate method of estimation. Most of the equations in classical methods are linear equations and finding analytical solutions to such equations is very difficult. Some estimators are inefficient because of problems in solving these equations. In this paper, we will estimate the survival function of censored data by using one of the most important artificial intelligence algorithms that is called the genetic algorithm to get optimal estimates for parameters Weibull distribution with two parameters. This leads to optimal estimates of the survival function. The genetic algorithm is employed in the method of moment, the least squares method and the weighted

... Show More
Scopus (2)
Scopus
Publication Date
Mon May 16 2016
Journal Name
Far East Journal Of Mathematical Sciences (fjms)
MINIMIZING WAITING TIMES USING MULTIPLE FUZZY QUEUEING MODEL WITH SUPPLY PRIORITIES
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
A Parallel Adaptive Genetic Algorithm for Job Shop Scheduling Problem
...Show More Authors

Publication Date
Fri Apr 01 2011
Journal Name
Al-mustansiriyah Journal Of Science
A Genetic Algorithm Based Approach For Generating Unit Maintenance Scheduling
...Show More Authors

Publication Date
Fri Aug 01 2008
Journal Name
2008 First International Conference On The Applications Of Digital Information And Web Technologies (icadiwt)
Hybrid canonical genetic algorithm and steepest descent algorithm for optimizing likelihood estimators of ARMA (1, 1) model
...Show More Authors

This paper presents a hybrid genetic algorithm (hGA) for optimizing the maximum likelihood function ln(L(phi(1),theta(1)))of the mixed model ARMA(1,1). The presented hybrid genetic algorithm (hGA) couples two processes: the canonical genetic algorithm (cGA) composed of three main steps: selection, local recombination and mutation, with the local search algorithm represent by steepest descent algorithm (sDA) which is defined by three basic parameters: frequency, probability, and number of local search iterations. The experimental design is based on simulating the cGA, hGA, and sDA algorithms with different values of model parameters, and sample size(n). The study contains comparison among these algorithms depending on MSE value. One can conc

... Show More
View Publication
Scopus (1)
Scopus Crossref