A new data for Fusion power density has been obtained for T-3He and T-T fusion reactions, power density is a substantial term in the researches related to the fusion energy generation and ignition calculations of magnetic confined systems. In the current work, thermal nuclear reactivities, power densities of a fusion reactors and the ignition condition inquiry are achieved by using a new and accurate formula of cross section, the maximum values of fusion power density for T-3He and TT reaction are 1.1×107 W/m3 at T=700 KeV and 4.7×106 W/m3 at T=500 KeV respectively, While Zeff suggested to be 1.44 for the two reactions. Bremsstrahlung radiation has also been determined to reaching self- sustaining reactors, Bremsstrahlung values are 4.5×106 W/m3 at T=700 MeV and 3.8×106 W/m3 at T=500 MeV for T-3He and TT reaction respectively, ignation values then are 136 KeV for T-T and 155 KeV for T-3He. So small Zeff mean small ignition and large fusion power. Tritium Fusion Reactions have large ignition temperature than deuterium reactions.
One of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera
... Show MoreA numerical study has been carried out to investigate heat transfer by natural convection and radiation under the effect of magnetohydrodynamic (MHD) for steady state axisymmetric twodimensional laminar flow in a vertical cylindrical channel filled with saturated porous media. Heat is generated uniformly along the center of the channel with its vertical surface remain with cooled constant wall temperature and insulated horizontal top and bottom surfaces. The governing equations which used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected on the system are Rayl
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show MoreAbstract: This research deals with the developing of power and different abilities (military, security, economy, technology and scientific excellence) The research shows that the excellence of the Chinese economy and its development , had a positive reflection on the other powers and abilities , it means it is a base of development in all fields. The development in power and Chinese military abilities had a clear effect on Chinese strategic creed , and that what the research deals with in some details. The research also deals with developing Chinese nuclear abilities. The research doesn't ignore the security eye that indicates to the protection of the state sovereignty, concentrating on the unity and safety Chinese lands. The res
... Show MoreIn this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
The particle-hole state densities have been calculated for 232Th in
the case of incident neutron with , 1 Z Z T T T T and 2 Z T T .
The finite well depth, surface effect, isospin and Pauli correction are
considered in the calculation of the state densities and then the
transition rates. The isospin correction function ( ) iso f has been
examined for different exciton configurations and at different
excitation energies up to 100 MeV. The present results are indicated
that the included corrections have more affected on transition rates
behavior for , , and above 30MeV excitation energy
Accurate description of thermodynamic, structural, and electronic properties for bulk and surfaces of ceria (CeO2) necessitates the inclusion of the Hubbard parameter (U) in the density functional theory (DFT) calculations to precisely account for the strongly correlated 4f electrons. Such treatment is a daunting task when attempting to draw a potential energy surface for CeO2-catalyzed reaction. This is due to the inconsistent change in thermo-kinetics parameters of the reaction in reference to the variation in the U values. As an illustrative example, we investigate herein the discrepancy in activation and reaction energies for steps underlying the partial and full hydrogenation of acetylene over the CeO2(111) surface. Overall, we find th
... Show MoreToday the NOMA has exponential growth in the use of Optical Visible Light Communication (OVLC) due to good features such as high spectral efficiency, low BER, and flexibility. Moreover, it creates a huge demand for electronic devices with high-speed processing and data rates, which leads to more FPGA power consumption. Therefore; it is a big challenge for scientists and researchers today to recover this problem by reducing the FPGA power and size of the devices. The subject matter of this article is producing an algorithm model to reduce the power consumption of (Field Programmable Gate Array) FPGA used in the design of the Non-Orthogonal Multiple Access (NOMA) techniques applied in (OVLC) systems combined with a blue laser. However, The po
... Show MoreThe efficiency of Nd:YAG laser radiation in removing debris and smear layer from prepared root
canal walls was studied. Fifty-seven human extracted single rooted anterior teeth were divided into three
groups. A group that was not lased is considered as a control group. The remaining teeth were exposed to
different laser parameters regarding laser energy, repetition rate and exposure time. For the case of the set of
parameters of 7 mJ laser energy, the cleaning was maximum at 3 p.p.s. repetition rate for 3 seconds exposure
time for, the coronal, middle and apical thirds. Above and below this energy level, there was an overdose
(melting) or under dose (no effect). Nevertheless for 10mJ laser energy case, the cleaning effi