In this work, we introduce a new kind of perfect mappings, namely j-perfect mappings and j-ω-perfect mappings. Furthermore we devoted to study the relationship between j-perfect mappings and j-ω-perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied; j = , δ, α, pre, b, β
The main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied
A study were conducted to examinate the effect of organic and aqueous (Hot, Cold) Extracts from leaves of Duranta repens on the growth and activities of the following types of Bacteria:- Staphylococcus aureus,Streptococcus pyogens ,Escherichia coli,Klebsilla pneumonia, in addition to the yeast Candida albicans and the fungi Aspergullis niger ,Aspergulls flavus.The result showed that gram Positive Bacteria is more sensitive to the extracts than gram negative bacteria with Minimum inhibitory concentration (MIC) value (50,25,50,100)% and Minimum Bactericidal Concentration (MBC) value (100,50,200,100)% for all types Bacteria respectively . The most active extract against A.niger ,A,flavus was cold and hot aqueous extract from the leaves with d
... Show MoreAbstract. Nano-continuous mappings have a wide range of applications in pure and applied sciences. This paper aims to study and investigate new types of mappings, namely nano-para-compact, completely nano-regular, nano-para-perfect, and countably nano-para-perfect mappings in nano-topological spaces using nano-open sets. We introduce several properties and basic characterizations related to these mappings, which are essential for proving our main results. Additionally, we discuss the relationships among these types of mappings in nano-topological spaces. We also introduce the concept of nano-Ti-mapping, where i = 0, 1, 2, nano-neighborhood separated, and nano-functionally separated, along with various other definitions. We explore the relat
... Show MoreFuzzy orbit topological space is a new structure very recently given by [1]. This new space is based on the notion of open fuzzy orbit sets. The aim of this paper is to provide applications of open fuzzy orbit sets. We introduce the notions of fuzzy orbit irresolute mappings and fuzzy orbit open (resp. irresolute open) mappings and studied some of their properties. .
In this paper, we prove some coincidence and common fixed point theorems for a pair of discontinuous weakly compatible self mappings satisfying generalized contractive condition in the setting of Cone-b- metric space under assumption that the Cone which is used is nonnormal. Our results are generalizations of some recent results.
In this paper we introduce a lot of concepts in bitopological spaces which are ij-ω-converges to a subset, ij-ω-directed toward a set, ij-w-closed functions, ij-w-rigid set, ij-w-continuous functions and the main concept in this paper is ij-w-perfect functions between bitopological spaces. Several theorems and characterizations concerning these concepts are studied.
The aim of this research is to know danger of radioactive isotopes
that are found in samples of drugs traded in Iraqi markets. The
samples are Iraqi Amoxicillin, English Amoxicillin, UAE
Amoxicillin, Indian Amoxicillin, Iraqi Paracetamol, English
Paracetamol, UAE Paracetamol and Indian Paracetamol. By high
purity germanium the activity of the following isotopes 40K, 214Pb,
228Ac and 137Cs is measured and the specific activity was used to
calculate the annual effective dose. Then the calculated annual
effective dose values are compared with the allowable annual
effective dose values of each part of digestive channel. This research
concluded that the measured annual effective dose values are not
dangerous.<
This article will introduce a new iteration method called the zenali iteration method for the approximation of fixed points. We show that our iteration process is faster than the current leading iterations like Mann, Ishikawa, oor, D- iterations, and *- iteration for new contraction mappings called quasi contraction mappings. And we proved that all these iterations (Mann, Ishikawa, oor, D- iterations and *- iteration) equivalent to approximate fixed points of quasi contraction. We support our analytic proof by a numerical example, data dependence result for contraction mappings type by employing zenali iteration also discussed.