This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANOVA) which indicates that the percentage of contribution followed the order: time (47.42%), C.D. (37.13%), Mesh number (5.73%), and Mn initial Conc. (0.05%). The electrolysis time and C.D. were the most effective operating parameters and mesh no. had a fair influence on Mn removal efficiency, while the initial conc. of Mn. had no significant effect in the studied ranges of control factors. Regression analysis (R2= 90.16%) showed an acceptable agreement between the experimental and the predicted values, and confirmation test results revealed that the removal efficiency of Mn at optimum conditions was higher than 99%.
This study illustrates the impact of non-thermal plasma (Cold Atmospheric Plasma CAP) on the lipids blood, the study in vivo. The lipids are (cholesterol, HDL-Cholesterol, LDL-Cholesterol and triglyceride) are tested. (FE-DBD) scheme of probe diameter 4cm is used for this purpose, and the output voltage ranged from (0-20) kV with variable frequency (0-30) kHz. The effect of non-thermal atmospheric plasma on lipids were studied with different exposure durations (20,30) sec. As a result, the longer plasma exposure duration decreases more lipids in blood.
Optical properties of chromium oxide (Cr2O3) thin films which were prepared by pulse laser deposition method, onto glass substrates. Different laser energy (500-900) mJ were used to obtain Cr2O3 thin films with thickness ranging from 177.3 to 372.4 nm were measured using Tolansky method. Then films were annealed at temperature equal to 300 °C. Absorption spectra were used to determine the absorption coefficient of the films, and the effects of the annealing temperature on the absorption coefficient were investigated. The absorption edge shifted to red range of wavelength, and the optical constants of Cr2O3 films increases as the annealing temperature increased to 300 °C. X-ray diffraction (XRD) study reveals that Cr2O3 thin films are a
... Show MoreThis work aimed to prepare and study the characteristic feature of lead nanoparticles (PbNPS) and follow its effects on some physiological aspects in rats.PbNPS was prepared by laser ablation of pure lead mass with a pulse of 500 and 100 mJ of energy. The results indicated that the wavelength was approximately 196 and the concentration was reported at 53,8967 mg / L. AFM, as the average diameter has been estimated at 69.93 nm. EFSEM shows the spherical shape of the particle.The experimental animals (rats) were divided into two groups, with seven rats for each one. The first group was a control and the second group was injected with 1 milliliter of PbNPS (53.8673 mg/l) per day for 45 days. Bioaccumulated lead ( in liver, spleen kidney and
... Show MorePositron annihilation lifetime (PAL) technique has been employed to
study the microstructural changes of polyurethane (PU), EUXIT 101
and epoxy risen (EP), EUXIT 60 by Gamma-ray irradiation with the
dose range (95.76 - 957.6) kGy. The size of the free volume hole and
their fraction in PU and EP were determined from ortho-positronium
lifetime component and its intensity in the measured lifetime spectra.
The results show that the irradiation causes significant changes in the
free volume hole size (Vh) and the fractional free volume (Fh), and
thereby the microstructure of PU and EP. The results indicate that
the γ-dose increases the crystallinity in the amorphous regions of PU
and increas
Zinc Oxide nanoparticles were prepared using pulsed laser ablation process from a pure zinc metal placed inside a liquid environment. The latter is composed of acetyltrimethylammonium bromide (CTAB) of 10−3 molarity and distilled water. A Ti:Sapphire laser of 800 nm wavelength, 1 kHz pulse repetition rate, 130 fs pulse duration is used at three values of pulse energies of 0.05 mJ, 1.11 mJ and 1.15 mJ. The evaluation of the optical properties for the obtained suspension was applied through ultraviolet–visible absorption spectroscopy test (UV/VIS). The result showed peak wavelengths at 210 nm, 211 nm and 213 nm for the three used pulse energies 0.05 mJ, 1.11 mJ and 1.15 mJ respectively. This indicates a blue shift,
... Show MoreBackground: Due to the complicated and time-consuming physiological procedure of bone healing, certain graft materials have been frequently used to enhance the reconstruction of the normal bone architecture. However, owing to the limitations of these graft materials, some pharmaceutical alternatives are considered instead. Chitosan is a biopolymer with many distinguishing characteristics that make it one of the best materials to be used as a drug delivery system for simvastatin. Simvastatin is a cholesterol lowering drug, and an influencer in bone formation process, because it stimulates osteoblasts differentiation, bone morphogenic protein 2, and vascular endothelial growth factor. Objectives: histological, histochemical and histomorp
... Show MoreSpray pyrolysis technique was used to make Carbon60-Zinc oxide (C60-ZnO) thin films, and chemical, structural, antibacterial, and optical characterizations regarding such nanocomposite have been done prior to and following treatment. Fullerene peaks in C60-ZnO thin films are identical and appear at the same angles. Following the treatment of the plasma, the existence regarding fullerene peaks in the thin films investigated suggests that the crystallographic quality related to C60-ZnO thin films has enhanced. Following plasma treatment, field emission scanning electron microscopy (FESEM) images regarding a C60-ZnO thin film indicate that both zinc oxide and fullerene particles had shrunk in the size and have an even distribution. In addition
... Show MoreNew simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l. mole1. cm-1 and Sandel’s index 0.0449 μg. cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg. ml-1 with relative standard deviation percent (RSD%) ranged between 0.26-4.71% and accuracy, expressed by recovery percent, 95-106% for five
... Show MoreThis research aims to find how three different types of mouthwashes affect the depth of artificial white spot lesions. Teeth with various depths of white spot lesions were immersed in either splat mouthwash, Biorepair mouthwash, Sensodyne mouthwash, or artificial saliva (control)twice daily for one minute for 4 weeks and 8 weeks at 37°C. After this immersion procedure, lesion depth was measured using a diagnosed pen score. A one-way analysis of variance, Dunnett T3 and Tukey's post hoc α = .05 were used to analyze the testing data. Splat mouthwash enhanced the WSL remineralization and made the lowest ΔF compared with other mouthwashes in shallow and deep enamel after 4 and 8 weeks of treatment. In the repair groups, after 4 weeks
... Show More