This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANOVA) which indicates that the percentage of contribution followed the order: time (47.42%), C.D. (37.13%), Mesh number (5.73%), and Mn initial Conc. (0.05%). The electrolysis time and C.D. were the most effective operating parameters and mesh no. had a fair influence on Mn removal efficiency, while the initial conc. of Mn. had no significant effect in the studied ranges of control factors. Regression analysis (R2= 90.16%) showed an acceptable agreement between the experimental and the predicted values, and confirmation test results revealed that the removal efficiency of Mn at optimum conditions was higher than 99%.
This paper aimed to investigate the effect of the height-to-length ratio of unreinforced masonry (URM) walls when loaded by a vertical load. The finite element (FE) method was implemented for modeling and analysis of URM wall. In this paper, ABAQUS, FE software with implicit solver was used to model and analysis URM walls subjected to a vertical load. In order to ensure the validity of Detailed Micro Model (DMM) in predicting the behavior of URM walls under vertical load, the results of the proposed model are compared with experimental results. Load-displacement relationship of the proposed numerical model is found of a good agreement with that of the published experimental results. Evidence shows that load-displacement curve obtained fro
... Show MoreThis study describes the preparation of new series of tetra-dentate N2O2 dinuclear complexes (Cr3+, Co2+, Cu2+) of the Schiff base derived from condensation of 1-Hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. The structures of the ligands were identified using IR, UV-Vis , mass, elemental analysis and 1H-NMR techniques. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, theromgravimatric analysis (TGA) and metal analysis by atomic absorption. From stoichiometry of metal to ligand and all measurements show a octahedral geometry proposed for all
... Show MoreThis study describes the preparation of new series of tetra-dentate N2O2 dinuclear complexes (Cr3+, Co2+, Cu2+) of the Schiff base derived from condensation of 1-Hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. The structures of the ligands were identified using IR, UV-Vis , mass, elemental analysis and 1H-NMR techniques. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, theromgravimatric analysis (TGA) and metal analysis by atomic absorption. From stoichiometry of metal to ligand and all measurements show a octahedral geometry proposed for all complexes of the (Cr3+, Co2+, Cu2+). conductivity measurement shows t
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreBackground: Fixed orthodontic appliances impede the maintenance of oral hygiene and result in plaque accumulation leads to enamel demineralization caused by acids produced by bacteria. Studies on plaque control strategies in orthodontic populations are limited. This might be caused by difficulties in the quantitative evaluation of dental plaque because the teeth have various levels of bracket coverage, and different tooth sizes and malocclusions, making the traditional categorical indices complex. The present study aims to evaluate the effect of different hygiene protocols on plaque quantity on bands with different attachments. Materials and method: Twenty patients had four bands within the orthodontic appliance. Then randomly divided into
... Show MoreContracting cancer typically induces a state of terror among the individuals who are affected. Exploring how chemotherapy and anxiety work together to affect the speed at which cancer cells multiply and the immune system’s response model is necessary to come up with ways to stop the spread of cancer. This paper proposes a mathematical model to investigate the impact of psychological scare and chemotherapy on the interaction of cancer and immunity. The proposed model is accurately described. The focus of the model’s dynamic analysis is to identify the potential equilibrium locations. According to the analysis, it is possible to establish three equilibrium positions. The stability analysis reveals that all equilibrium points consi
... Show MoreThe ligand 4-(2-aminmo-5-nitro-phenylazo)-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one derived from 4-aminoantipyrine and 4-nitroaniline was synthesized. The synthesized ligand was characterized by 1HNMR, FT-IR, UV-Vis spectra and (C.H.N) analysis. Complexes of (YIII and LaIII ) with the ligand were prepared in aqueous ethanol with a 1:2 M:L ratio and at optimum pH. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis spectra,(C.H.N) analysis and conductivity measurement. The stoichiometry of complexes was studied by the mole ratio and job methods. A concentration range (1×10-4 - 3×10-4 M) obeyed Beer's law, the complex solutions show high values of molar absorption. On the basis of physicochemical
... Show More