Preferred Language
Articles
/
eoZ0QYYBIXToZYALvICJ
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANOVA) which indicates that the percentage of contribution followed the order: time (47.42%), C.D. (37.13%), Mesh number (5.73%), and Mn initial Conc. (0.05%). The electrolysis time and C.D. were the most effective operating parameters and mesh no. had a fair influence on Mn removal efficiency, while the initial conc. of Mn. had no significant effect in the studied ranges of control factors. Regression analysis (R2= 90.16%) showed an acceptable agreement between the experimental and the predicted values, and confirmation test results revealed that the removal efficiency of Mn at optimum conditions was higher than 99%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness after Turning of Duplex Stainless Steel (DSS)
...Show More Authors

Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Jun 29 2015
Journal Name
Separation Science And Technology
An acidic injection well technique for enhancement of the removal of copper from contaminated soil by electrokinetic remediation process
...Show More Authors

Scopus (16)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Wear Parameters in AISI 4340 Steel
...Show More Authors

Abstract

 This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 15 2011
Journal Name
Iraqi Journal Of Laser
Laser Hole Drilling of Stainless Steel 321H and Steel 33 Using 3D CO2 Laser CNC Machine
...Show More Authors

In present work an investigation for precise hole drilling via continuous wave (CW) CO2 laser at 150 W maximum output power and wavelength 10.6 μm was achieved with the assistance of computerized numerical controlled (CNC) machine and assist gases. The drilling process was done for thin sheets (0.1 – 0.3 mm) of two types of metals; stainless steel (sst) 321H, steel 33 (st). Changing light and process parameters such as laser power, exposure time and gas pressure was important for getting the optimum results. The obtained results were supported with computational results using the COMSOL 3.5a software code.

View Publication Preview PDF
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Coagulation-Flocculation process to treat Pulp and Paper Mill Wastewater by Fenugreek Mucilage Coupled with Alum and Polyaluminum Chloride
...Show More Authors

The wastewater arising from pulp and paper mills is highly polluted and has to be treated before discharged into rivers. Coagulation-flocculation process using natural polymers has grown rapidly in wastewater treatment. In this work, the performance of alum and Polyaluminum Chloride (PACl) when used alone and when coupled with Fenugreek mucilage on the treatment of pulp and paper mill wastewater were studied. The experiments were carried out in jar tests with alum, PACl and Fenugreek mucilage dosages range of 50-2000 mg/L, rapid mixing at 200 rpm for 2 min, followed by slow mixing at 40 rpm for 15 min and settling time of 30 min. The effectiveness of Fenugreek mucilage was measured by the reduction of turbidity and Chemical Oxygen Demand

... Show More
View Publication Preview PDF
Publication Date
Tue Sep 04 2018
Journal Name
Al-khwarizmi Engineering Journal
Effect of Carburization Parameters on Hardness of Carburized Steel Using MOORA Approach
...Show More Authors

In this research, (MOORA) approach based– Taguchi design was used to convert the multi-performance problem into a single-performance problem for nine experiments which built (Taguchi (L9) orthogonal array) for carburization operation. The main variables that had a great effect on carburizing operation are carburization temperature (oC), carburization time (hrs.) and tempering temperature (oC). This study was also focused on calculating the amount of carbon penetration, the value of hardness and optimal values obtained during the optimization by Taguchi approach and MOORA method for multiple parameters. In this study, the carburization process was done in temperature between (850 to 950 ᵒC) for 2 to 6

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Lettuce Leaves as Biosorbent Material to Remove Heavy Metal Ions from Industerial Wastewater
...Show More Authors

The current study was designed to remove Lead, Copper and Zinc from industrial wastewater using Lettuce leaves (Lactuca sativa) within three forms (fresh, dried and powdered) under some environmental factors such as pH, temperature and contact time. Current data show that Lettuce leaves are capable of removing Lead, Copper and Zinc ions at significant capacity. Furthermore, the powder of Lettuce leaves had highest capability in removing all metal ions. The highest capacity was for Lead then Copper and finally Zinc. However, some examined factors were found to have significant impacts upon bioremoval capacity of studied ions, where best biosorption capacity was found at pH 4, at temperature 50º C and contact time of 1 hour.

View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Desalination And Water Treatment
The removal of Pb(II) ions from aqueous solutions by immobilized (Chlorophyta) macroalgae: an equilibrium, kinetic, and desorption-regeneration study
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Sat Mar 17 2012
Journal Name
Environmental Science And Pollution Research Volume
Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater
...Show More Authors

Purpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that

... Show More
View Publication Preview PDF
Crossref (51)
Crossref
Publication Date
Tue Mar 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of dyes from polluted water by adsorption on maize cob
...Show More Authors

This research aimed to examine the effect of concentration of dyes stuff, contact time, temperature and ratio of adsorbent weight in (gm) to volume of solution in (ml) on the percentage removal. Two dyes were used; direct blue 6 and direct yellow and the adsorbent was the maize cob. Batch experiments were performed by contacting different weights of adsorbent with 50 ml of solution of desired concentration with continuous stirring at various temperatures. The percentage of removal was calculated and the maximum percentage of removal was 80%. And as the concentration of solution, contact time, temperature and the ratio of adsorbent to volume of solution increase the percentage of removal increase.

View Publication Preview PDF