Preferred Language
Articles
/
alkej-93
Effect of Carburization Parameters on Hardness of Carburized Steel Using MOORA Approach

In this research, (MOORA) approach based– Taguchi design was used to convert the multi-performance problem into a single-performance problem for nine experiments which built (Taguchi (L9) orthogonal array) for carburization operation. The main variables that had a great effect on carburizing operation are carburization temperature (oC), carburization time (hrs.) and tempering temperature (oC). This study was also focused on calculating the amount of carbon penetration, the value of hardness and optimal values obtained during the optimization by Taguchi approach and MOORA method for multiple parameters. In this study, the carburization process was done in temperature between (850 to 950 ᵒC) for 2 to 6 hours. Quenching was done for the specimens after heat treatments in furnace chamber by using different quench solutions, water, salt and polyvinyl alcohol. Analysis of variances - (ANOVA) were performed for nine experiments in order to optimize the problem that was associated with multiple criteria (parameter) to achieve maximum hardness and depth penetration. The program results showed that the optimum conditions are carburization temperature (950 oC), carburization time (2 hrs.), tempering temperature (200oC), tempering time (10 hrs.), and activator (10 wt. %). Furthermore, the best quenching media was the polyvinyl alcohol.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 04 2018
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect of Cutting Parameters on Temperature Distribution and Tool Life During Turning Stainless Steel 316L

This paper is focused on studying the effect of cutting parameters (spindle speed, feed and depth of cut) on the response (temperature and tool life) during turning process. The inserts used in this study are carbide inserts coated with TiAlN (Titanum, Aluminium and Nitride) for machining a shaft of stainless steel 316L. Finite difference method was used to find the temperature distribution. The experimental results were done using infrared camera while the simulation process was performed using Matlab software package. The results showed that the  maximum difference between the experimental and simulation results was equal to 19.3 , so, a good agreement between the experimental and simulation results  was achieved. Tool life w

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect of Welding Heat Input on the Microstructure, Hardness, and Impact Toughness of AISI 1015 Steel

In the present study, MIG welding is carried out on low carbon steel type (AISI 1015) by using electrode ER308L of 1.5mm diameter with direct current straight polarity (DCSP). The joint geometry is of a single V-butt joint with one pass welding stroke for different plate thicknesses of 6, 8, and 10 mm. In welding experiments, AISI 1015 plates with dimensions of 200×100mm and edge angle of 60o from both sides are utilized. In this work, three main parameters related to MIG welding process are investigated, which are welding current, welding speed, heat input and plate thickness, and to achieve that three groups of plates are employed each one consists of three plates. The results indicate that increasing the weld heat input (t

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
An Experimental Study on Electrochemical Grinding Parameters on Hardness and Material Removal Rate for Stainless Steel 316

Electrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Wear Parameters in AISI 4340 Steel

Abstract

 This study investigated the optimization of wear behavior of AISI 4340 steel based on the Taguchi method under various testing conditions. In this paper, a neural network and the Taguchi design method have been implemented for minimizing the wear rate in 4340 steel. A back-propagation neural network (BPNN) was developed to predict the wear rate. In the development of a predictive model, wear parameters like sliding speed, applying load and sliding distance were considered as the input model variables of the AISI 4340 steel. An analysis of variance (ANOVA) was used to determine the significant parameter affecting the wear rate. Finally, the Taguchi approach was applied to determine

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Study the Inhibition Effect of Amoxicillin Drug for Corrosion of Carbon Steel in Saline Media

          Potentiostatic polarization and weight loss methods have been used to investigate the corrosion behavior of carbon steel in sodium chloride solution at different concentrations (0.1, 0.4 and 0.6) M under the influence of temperatures ( 293, 298, 303, 308 and 313) K. The inhibition efficiency of the amoxicillin drug on carbon steel in 0.6 M NaCl has also been studied based on concentration and temperature. The corrosion rate showed that all salt concentrations ( NaCl solution) resulted in corrosion of carbon steel in varying ratio and 0.6 M of salt solution  was the highest rate (50.46 g/m².d). The results also indicate that the rate of corrosion increases at a temperature of 313 K.. Potentiodynamic polarization studi

... Show More
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Sep 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Study the Effects of Machining Parameters on Surface Roughness for Free Form Surface Using Taguchi Method

The surface finish of the machining part is the mostly important characteristics of products quality and its indispensable customers’ requirement. Taguchi robust parameters designs for optimizing for surface finish in turning of 7025 AL-Alloy using carbide cutting tool has been utilized in this paper. Three machining variables namely; the machining speeds (1600, 1900, and 2200) rpm, depth of cut (0.25, 0.50, 0.75) mm and the feed rates (0.12, 0.18, 0.24) mm/min utilized in the experiments. The other variables were considered as constants. The mean surface finish was utilized as a measuring of surface quality. The results clarified that increasing the speeds reduce the surface roughness, while it rises with increasing the depths and fee

... Show More
View Publication Preview PDF
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Effect of Stiffeners on Shear Lag in Steel Box Girders

This paper studies the effects of stiffeners on shear lag in steel box girders with stiffened flanges. A three-dimensional linear finite element analysis using STAAD.Pro V8i program has been employed to evaluate and determine the actual top flange stress distribution and effective width in steel box girders. The steel plates of the flanges and webs have been modeled by four-node isoparametric shell elements, while the stiffeners have been modeled as beam elements. Different numbers (4, 8, and 15) for the steel stiffeners have been used in this study to establish their effects on the shear lag and longitudinal stresses in the flange. Using stiffeners reduced the magnitude of the top flange longitudinal stresses about 40%, but did

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effects of Long-Term Operation and High Temperature on Material Properties of Austenitic Stainless Steel Type 321H

Changes in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Water Temperature Effect on Hardness and Flexural Strength of (PMMA/TiO2 NPs) for Dental Applications

PMMA (Poly methyl methacrylate) is considered one of the most commonly used materials in denture base fabrication due to its ideal properties. Although, a major problem with this resin is the frequent fractures due to heavy chewing forces which lead to early crack and fracture in clinical use. The addition of nanoparticles as filler performed in this study to enhance its selected mechanical properties. The Nano-additive effect investigated in normal circumstances and under a different temperature during water exposure. First, tests applied on the prepared samples at room temperature and then after exposure to water bath at (20, 40, 60) C° respectively. SEM, PSD, EDX were utilized for samples evaluation in this study. Flexural

... Show More
Scopus (7)
Crossref (6)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
Experimental Modeling and Optimization of Fatigue Life and Hardness of Carbon Steel CK35 under Dynamic Buckling

Abstract

 

The aim of this paper is to model and optimize the fatigue life and hardness of medium carbon steel CK35 subjected to dynamic buckling. Different ranges of shot peening time (STP) and critical points of slenderness ratio which is between the long and intermediate columns, as input factors, were used to obtain their influences on the fatigue life and hardness, as main responses. Experimental measurements of shot peening time and buckling were taken and analyzed using (DESIGN EXPERT 8) experimental design software which was used for modeling and optimization purposes. Mathematical models of responses were obtained and analyzed by ANOVA variance to verify the adequacy of the models. The resul

... Show More
View Publication Preview PDF