In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in R program by using some existing packages.
Autorías: Mustafa Abdulamir Hussain, Ahmed Sebeaatea Almujamay, Riyadh khaleel khammas. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 5, 2022. Artículo de Revista en Dialnet.
The research aims to identify the level of awareness of student teachers in the behavioral disorders and autism specialization about the diagnosing Autism Spectrum Disorder and Social (Pragmatic) Communication Disorder according to some variables. The study was conducted on a sample of (113) student teachers. The researcher employed the awareness scale of a teacher-screening questionnaire for autism spectrum disorder and social pragmatic communication disorder. The results showed that the average of teachers in the total degree of awareness of autism spectrum disorder and social communication have recorded a moderate degree. As for the awareness of autism spectrum disorder was high. Then, the awareness of social communication disorder wa
... Show MoreThe problem of slow learning in primary schools’ pupils is not a local or private one. It is also not related to a certain society other than others or has any relation to a particular culture, it is rather an international problem of global nature. It is one of the well-recognized issues in education field. Additionally, it is regarded as one of the old difficulties to which ancient people gave attention. It is discovered through the process of observing human behaviour and attempting to explain and predict it.
Through the work of the two researchers via frequent visits to primary schools that include special classes for slow learning pupils, in addition to the fact that one of the researcher has a child with slow learning issue, t
The main goal of this research is to determine the impact of some variables that we believe that they are important to cause renal failuredisease by using logistic regression approach.The study includes eight explanatory variables and the response variable represented by (Infected,uninfected).The statistical program SPSS is used to proform the required calculations
The technology of reducing dimensions and choosing variables are very important topics in statistical analysis to multivariate. When two or more of the predictor variables are linked in the complete or incomplete regression relationships, a problem of multicollinearity are occurred which consist of the breach of one basic assumptions of the ordinary least squares method with incorrect estimates results.
There are several methods proposed to address this problem, including the partial least squares (PLS), used to reduce dimensional regression analysis. By using linear transformations that convert a set of variables associated with a high link to a set of new independent variables and unr
... Show MoreIn this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.
The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the
... Show MoreIn the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression.
In such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of t
... Show MoreFlexible pavements are considered an essential element of transportation infrastructure. So, evaluations of flexible pavement performance are necessary for the proper management of transportation infrastructure. Pavement condition index (PCI) and international roughness index (IRI) are common indices applied to evaluate pavement surface conditions. However, the pavement condition surveys to calculate PCI are costly and time-consuming as compared to IRI. This article focuses on developing regression models that predict PCI from IRI. Eighty-three flexible pavement sections, with section length equal to 250 m, were selected in Al-Diwaniyah, Iraq, to develop PCI-IRI relationships. In terms of the quantity and severity of eac
... Show More