Innovative laboratory research and fluid breakthroughs have improved carbonate matrix stimulation technology in the recent decade. Since oil and gas wells are stimulated often to increase output and maximum recovery, this has resulted in matrix acidizing is a less costly alternative to hydraulic fracturing; therefore, it is widely employed because of its low cost and the fact that it may restore damaged wells to their previous productivity and give extra production capacity. Limestone acidizing in the Mishrif reservoir has never been investigated; hence research revealed fresh insights into this process. Many reports have stated that the Ahdeb oil field's Mishrif reservoir has been unable to be stimulated due to high injection pressures, which make it difficult to inject acid into the reservoir formation; and (ii) only a few acid jobs have been successful in Ahdeb oil wells, while the bulk of the others has been unsuccessful. Based on an acid efficiency curve, an ideal gel acid (HCl 15%) injection rate for this reservoir was 2.16 cc/min. This injection rate produces an optimal wormhole and the least amount of acid utilized. The optimum pore volume to breakthrough in wormhole propagation was 2.73, and the optimal interstitial velocity in wormhole propagation was 0.6 cm/min. Researchers have developed new formulae to compute the skin factor in anisotropic carbonates generated from matrix acidizing for the first time. This experiment revealed the need to acidify the matrix at the optimal injection rate.
Benzene is a hydrocarbon chemical consisting of six atoms arranged in a ring structure. At normal ambient temperatures; it is a liquid, which evaporates rapidly at room temperature and is highly flammable. It has a characteristic of aromatic odor and is slightly soluble in water (1.5 g/liter at 20ºC) but miscible with most other organic solvents [1]. Long-term inhalation of benzene causes blood disorders. It specifically affects bone marrow [2]. And it may cause anemia, excessive bleeding, damage to the immune system and DNA [3, 4]. Increased incidence of leukemia (cancer of the tissues that form white blood cells) has been observed in people occupationally exposed to
... Show MoreThe aim of this study was extraction of jojoba oil using different solvents. A mixture of waterhexane and water-ethanol are used as solvents to extract jojoba oil in a batch extraction process and compared with a pure solvent extraction process. The effects of particle size of crushed seeds, solvent-to-water ratio and time on jojoba oil extraction were investigated. The best recovery of oil was obtained at the boiling temperature of the solvent and four hour of extraction time. When seed particle size was 0.45 mm and a pure ethanol was used (45% yield of oil extraction), whereas, it was 40% yield of oil at 25% water-hexane mixture. It was revealed that the water-ethanol and water-hexane mixtures have an effect on the oil extraction yield. T
... Show MoreAlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
AlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
As a reservoir is depleted due to production, pore pressure decreases leading to increased effective stress which causes a reduction in permeability, porosity, and possible pore collapse or compaction. Permeability is a key factor in tight reservoir development; therefore, understanding the loss of permeability in these reservoirs due to depletion is vital for effective reservoir management. The paper presents a case history on a tight carbonate reservoir in Iraq which demonstrates the behavior of rock permeability and porosity as a function of increasing effective stress simulating a depleting mode over given production time. The experimental results show unique models for the decline of permeability and porosity as function effective str
... Show MoreThis research has been prepared to isolate and diagnose one of the most important vegetable oils from the plant medical clove is the famous with Alaeugenol oil and used in many pharmaceuticals were the isolation process using a technique ultrasonic extraction and distillation technology simple
An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreIn the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.