Cysteine-cysteine chemokine ligand 5 (CCL5) is known to play an important role with immunoregulatory and inflammatory activities in the formation of granuloma during infection with Mycobacterium tuberculosis. About 90 subjects, involving 50 patients with pulmonary TB and 40 apparently healthy individuals (as a control group) were collected from primary health care center\AL-Sadur city sector/ Baghdad City/ Iraq, and at specialized chest and respiratory diseases center in Wassit City /Iraq during the period from January 2019 to May 2019. The study was carried out to investigate serum level of CCL-5 of both patients and control by using enzyme linked immunosorbent assay (ELISA), and to determine the association between CCL5 genotypes with pulmonary tuberculosis susceptibility in Iraqi population. Genotyping analysis of CCL5 rs2107538 was performed by using amplification refractory mutation system (ARMS-PCR) method. The results revealed that serum levels of CCL-5 was significantly, (P ≤0.01) increased in pulmonary tuberculosis patients compared to control. The mean ±SE of CCL-5 level in PTB patients and controls were 455.40 ±25.35 ng/L and 80.86 ± 5.96 ng/L, respectively. Analysis of H-W equilibrium revealed that CCL-5 rs2107538 GG, GA and AA genotypes in TB patient group were not in agreement with the equilibrium and there was a significant variation (p ≤ 0.05) between the observed and expected frequencies. While control group showed an agreement with the equilibrium. At position rs2107538, CCL-5 GG genotype showed a significant increased level of CCL-5 (531.01 ± 23.03 ng/L) in PTB patients compared to GA genotype (305.28 ± 33.45 ng/L) and AA genotype (150.27 ± 11.60 ng/L) of the patients. This study suggest that CCL-5 could be considered as a good biomarker for diagnosis of PTB, while it exclude the CCL-5 rs2107538 as major risk factor for tuberculosis in the Iraqi population
Nanofluids, liquid suspensions of nanoparticles (NPs) dispersed in deionized (DI) water, brine, or surfactant micelles, have become a promising solution for many industrial applications including enhanced oil recovery (EOR) and carbon geostorage. At ambient conditions, nanoparticles can effectively alter the wettability of the strongly oil-wet rocks to water-wet. However, the reservoir conditions present the greatest challenge for the success of this application at the field scale. In this work, the performance of anionic surfactant-silica nanoparticle formulation on wettability alteration of oil-wet carbonate surface at reservoir conditions was investigated. A high-pressure temperature vessel was used to apply nano-modification of oil-wet
... Show MoreIn low-latitude areas less than 10° in latitude angle, the solar radiation that goes into the solar still increases as the cover slope approaches the latitude angle. However, the amount of water that is condensed and then falls toward the solar-still basin is also increased in this case. Consequently, the solar yield still is significantly decreased, and the accuracy of the prediction method is affected. This reduction in the yield and the accuracy of the prediction method is inversely proportional to the time in which the condensed water stays on the inner side of the condensing cover without collection because more drops will fall down into the basin of the solar-still. Different numbers of scraper motions per hour (NSM), that is
... Show MoreMetal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe
... Show MoreThe current study aims to identify soil pollutants from heavy metals The study utilized 40 topsoil (5 cm) samples, which adapted and divided into seven regions lies in Baghdad governorate, included (Al-Husainya,(Hs) Al-Doura (Do), Sharie Al-Matar (SM), Al-Waziria (Wz), Nharawan (Nh), Abu Ghraib (Abu) and Al-Mahmoodyia (Mh)). Spatial distribution maps of Nickel (Ni), Manganese (Mn), Lead (Pb) and Zinc (Zn) were created for Baghdad city using Geographic Information Systems (GIS). The concentrations of four heavy metals in the soil of different area of Baghdad were measured and observed using XRF instrument. The result found highest values of Pb and Zn at the middle of the Baghdad in (Wz
Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
Construction of artificial higher order protein complexes allows sampling of structural architectures and functional features not accessible by classical monomeric proteins. Here, we combine in silico modelling with expanded genetic code facilitated strain promoted azide-alkyne cycloaddition to construct artificial complexes that are structurally integrated protein dimers and demonstrate functional synergy. Using fluorescent proteins sfGFP and Venus as models, homodimers and heterodimers are constructed that switched ON once assembled and display enhanced spectral properties. Symmetrical crosslinks are found to be important for functional enhancement. The determined molecular structure of one artific