Preferred Language
Articles
/
eRfxUJABVTCNdQwCXIYW
ZnO nanostructures as low concentration NO2 gas sensor and impact the temperature on sensing properties
...Show More Authors

Zinc oxide (ZnO) nanostructures were synthesized through the hydrothermal method at various conditions growth times (6,7 and 8 hrs.) and a growth temperature (70, 90, and 100 ºC). The prepared ZnO nanostructure samples were described using scanning electron microscopy (SEM) and X-ray diffractometer to distinguish their surface morphologies and crystal structures. The ZnO samples were confirmed to have the same crystal type, with different densities and dimensions (diameter and length). The obtained ZnO nanostructures were used to manufacture gas sensors for NO2 gas detection. Sensing characteristics for the fabricated sensor to NO2 gas were examined at different operating temperatures (180, 200, 220, and 240) ºC with a low gas concentration of 2 ppm. Sensor fabricated at (70 ◦C and 6 hrs.) appears higher gas sensitivity (6.319) with shorter response and recovery times of 41.4 s, and 23.4 s respectively at operating temperature 220 ◦C towards NO2 gas efficiently compared with other prepared samples. This study offers cost-effectiveness and a simple method for designing and fabricating gas sensors with good sensing characteristics, making it a favorable candidate for a NO2 gas monitor at low gas concentration.

Scopus Crossref
View Publication
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Photonic Crystal Fiber Pollution Sensor Based on the Surface Plasmon Resonance Technology
...Show More Authors

Photonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Irradiation Effects on The Sensitivity of ZnO Thin Films Synthesized on Glass Substrate by Sol-gel Method
...Show More Authors

This work investigates the structural, optical, and surface properties of ZnO thin films prepared by sol-gel method. The effect on waveguide sensor was examined at different irradiation durations of alpha particles. The X-ray diffraction (XRD) measurements revealed that the crystalline phase of ZnO thin films does not change after irradiation and showed a hexagonal structure of wurtzite type with an orientation toward (002). Moreover, ZnO thin films absorbance was increased with increasing irradiation time, whereas the transmittance was decreased. Additionally, increasing the irradiation time of alpha particles caused an increase in the extinction coefficient and the imaginary part,  while the optical energy gap of the ZnO samples w

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (5)
Scopus Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Temperature effect on optical properties of nickel (ii) phthalocyanine tetrasulfonic acid tetrasodium salt (NiPcTs) organic thin films
...Show More Authors

This study describe the effect of temperature on the optical
properties of nickel(ii) phthalocyanine tetrasulfonic acid tetrasodium
salt (NiPcTs) organic thin films which are prepared by spin coating
on indium tin oxide (ITO-glass). The optical absorption spectra of
these thin films are measured. Present studies reveal that the optical
band gap energies of NiPcTs thin films are dependent on the
annealing temperatures. The optical band gap decreases with increase
in annealing temperature, then increased when the temperature rising
to 473K. To enhance the results of Uv-Vis measurements and get
more accurate values of optical energy gaps; the Photoluminescence
spectra of as-deposited and annealed NiPcTs thin fi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jun 04 2018
Journal Name
Baghdad Science Journal
Designing and Constructing the Strain Sensor Using Microbend Multimode Fiber
...Show More Authors

The microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
The Influence of Ablation Speed on the Synthesis of Carbon Nanostructures Via Pulsed Laser Ablation of Asphalt in Ethanol
...Show More Authors

Pulsed liquid laser ablation is considered a green method for the synthesis of nanostructures because there are no byproducts formed after the ablation. In this paper, a fiber laser of wavelength 1.064 µm, peak power of 1 mJ, pulse duration of 120 ns, and repetition rate of 20 kHz, was used to produce carbon nanostructures including carbon nanospheres and carbon nanorods from the ablation of asphalt in ethanol at ablation speeds of (100, 75, 50, 10 mm/s).  The morphology, composition and optical properties of the synthesized samples were studied experimentally using FESEM, HRTEM, EDS, and UV-vis spectrophotometer. Results showed that the band gap energy decreased with decreasing the ablation speed (increasing the ablation time), the mi

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jun 07 2009
Journal Name
Baghdad Science Journal
The adsorption-desorption process as a method for separation of nitrogen-carbon dioxide gas mixture using activated carbon
...Show More Authors

Gas adsorption phenomenon on solid surface has been used as a mean in separation and purification of gas mixture depending on the difference in tendencies of each component in the gas mixture to be adsorbed on the solid surface according to its behaviour. This work concerns to study the possibilities to separate the gas mixture using adsorption-desorption phenomenon on activated carbon. The experimental results exhibit good separation factor at temperature of -40 .

View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Evaluation the fermentation capacity of commercial Baker′s yeast and effect of the salt concentration on breadLeavening.: Evaluation the fermentation capacity of commercial Baker′s yeast and effect of the salt concentration on breadLeavening.
...Show More Authors

This qualitative study was conducted on eight types of commercial baking yeast which available in local markets to estimate their fermentation activity as affecting the Bread industry and the impact of the salt added to DoughLeavening, The results showed a great variation in the fermentation capacity of yeast samples (their role in swelling the dough), most notably the sample value Y3 and least sample Y7 and reached 80% and 20% respectively, and the value of Leavening by using the two types of yeast with addition of three levels of salt (0 , 1 and 2%) have 20.0 , 19.7 and 15.7 of the sample Y3, compared with 10.5 , 10.3 and 8.8 of the sample Y7 for each of the levels of salt respectively, reflect

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Impact of Different H/D Ratio on Axial Gas Holdup Measured by Four-Tips Optical Fiber Probe in Slurry Bubble Column
...Show More Authors

In wide range of chemical, petrochemical and energy processes, it is not possible to manage without slurry bubble column reactors. In this investigation, time average local gas holdup was recorded for three different height to diameter (H/D) ratios 3, 4 and 5 in 18" diameter slurry bubble column. Air-water-glass beads system was used with superficial velocity up to 0.24 m/s. the gas holdup was measured using 4-tips optical fiber probe technique. The results show that the axial gas holdup increases almost linearly with the superficial gas velocity in 0.08 m/s and levels off with a further increase of velocity. A comparison of the present data with those reported for other slurry bubble column having diameters larger than

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 29 2020
Journal Name
Iraqi Journal Of Science
Optical Fiber Biomedical Sensor Based on Surface Plasmon Resonance
...Show More Authors

Optical fiber biomedical sensor based on surface plasmon resonance for measuring and sensing the concentration and the refractive index of sugar in blood serum is designed and implemented during this work. Performance properties such as signal to noise ratio (SNR), sensitivity, resolution and the figure of merit were evaluated for the fabricated sensor. It was found that the sensitivity of the optical fiber-based SPR sensor with 40 nm thick and 10 mm long Au metal film of the exposed sensing region is 7.5µm/RIU, SNR is 0.697, figure of merit is 87.2 and resolution is 0.00026. The sort of optical fiber utilized in this work is plastic optical fiber with a core diameter of 980 µm, a cladding of 20μm, and a numerical aperture of 0.

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (10)
Scopus Crossref
Publication Date
Fri Jan 13 2023
Journal Name
Atmosphere
Impact of North African Sand and Dust Storms on the Middle East Using Iraq as an Example: Causes, Sources, and Mitigation
...Show More Authors

This study aims to determine the reasons for the increase in the frequency of sand and dust storms in the Middle East and to identify their sources and mitigate them. A set of climatic data from 60 years (1960–2022) was analyzed. Sand storms in Iraq are a silty sand mature arkose composed of 72.7% sand, 25.1% silt, and 2.19% clay; the clay fraction in dust storms constitutes 70%, with a small amount of silt (20.6%) and sand (9.4%). Dust and sand storms (%) are composed of quartz (49.2, 67.1), feldspar (4.9, 20.9), calcite (38, 5), gypsum (4.8, 0.4), dolomite (0.8, 1.0), and heavy minerals (3.2, 6.6). Increasing temperatures in Iraq, by an average of 2 °C for sixty years, have contributed to an increase in the number of dust storm

... Show More
View Publication Preview PDF
Crossref (19)
Crossref