Lasers, with their unique characteristics in terms of excellent beam quality, especially directionality and coherency, make them the solution that is key for many processes that require high precision. Lasers have good susceptibility to integrate with automated systems, which provides high flexibility to reach difficult zones. In addition, as a processing tool, a laser can be considered as a contact-free tool of precise tip that became attractive for high precision machining at the micro and nanoscales for different materials. All of the above advantages may be not enough unless the laser technician/engineer has enough knowledge about the mechanism of interaction between the laser light with the processed material. Several sequential phenomena occur when an intense laser beam is incident on the surface of a material. Heating, melting, vaporization and plasma formation are present in the normal interaction of an intense laser beam with matter. This may be followed by additional events such as acoustic and optical emissions, structure shockwaves, thermal effects, structural defects and residual stresses. The process is affected by a lot of variables that can transfer the interaction towards extremely different behavior in terms of colder and fewer side-effect interactions, which yield precise features for the processed material. The most crucial variables are the time scale of interaction and laser wavelength with respect to the properties of the processed material undertaken as well as the laser fluence. The objective of this chapter is to introduce the fundamentals of physical and mathematical concepts of laser and matter interaction and its dependency on different time scale regimes. Interaction with a short and ultra-short laser pulse has attracted a significant amount of interest in industry due to its huge impact in micro-/nanomachining applications.
Previous data indicated the effectiveness of silibinin as intraocular pressure (IOP) - lowering agent. The present study was performed to evaluate the interaction of silibinin with pilocarpine or cyclopentolate in lowering IOP in normotensive rabbits. The effects of topically instilled silibinin hemisuccinate solution (0.75%) alone or adjunctly combined with 2% pilocarpine or 1% cyclopentolate on the IOP of normotensive rabbits were evaluated using indentation tonometry. The results showed that 0.75% solution of silibinin was found more potent than pilocarpine (2% drops) in lowering IOP of normotensive rabbits, while their combination results in longer duration of action. Moreover, the elevated IOP values produced by cyclopentolate
... Show MoreIn today's world, the science of bioinformatics is developing rapidly, especially with regard to the analysis and study of biological networks. Scientists have used various nature-inspired algorithms to find protein complexes in protein-protein interaction (PPI) networks. These networks help scientists guess the molecular function of unknown proteins and show how cells work regularly. It is very common in PPI networks for a protein to participate in multiple functions and belong to many complexes, and as a result, complexes may overlap in the PPI networks. However, developing an efficient and reliable method to address the problem of detecting overlapping protein complexes remains a challenge since it is considered a complex and har
... Show MoreA statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion c
Recent research has examined the improvement of physical and dielectric properties of BaTiO3 ceramic material by small addition of excess TiO2 or BaCO3. The prepared samples sintered at different temperatures and varying soaking time. The results show that increasing the sintering temperature within 1350°C and soaking time of 10 hrs give better electrical and physical properties, which indicate the reaction is complete at higher temperature and period.
Authentic materials are the most important tools that the teacher could use in class in order to make teaching go smoothly and effectively in transmitting the necessary knowledge to all students. This research has investigated experimentally the effect of using authentic materials in teaching English as a foreign Language, because a number of studies point out that the use of authentic materials is regarded a useful means to motivate learners, arouse their interest and expose them to the real language they will face in real life situations.
It is hypothesis that there is no statistical significance difference between the experimental group who taught English as a foreign language by using the authentic materials with those
... Show Moremixtures of cyclohexane + n-decane and cyclohexane + 1-pentanol have been measured at 298.15, 308.15, 318.15, and 328.15 K over the whole mole fraction range. From these results, excess molar volumes, VE , have been calculated and fitted to the Flory equations. The VE values are negative and positive over the whole mole fraction range and at all temperatures. The excess refractive indices nE and excess viscosities ?E have been calculated from experimental refractive indices and viscosity measurements at different temperature and fitted to the mixing rules equations and Heric – Coursey equation respectively to predict theoretical refractive indices, we found good agreement between them for binary mixtures in this study. The variation of th
... Show MoreAbstract
The nuclear structure of 28-40Si isotopes toward neutron dripline has been investigated in framework of shell model with Skyrme-Hrtree-Fock method using certain Skyrme parameterizations. Moreover, investigations of static properties such as nuclear densities for proton, neutron, mass, and, charge densities with their corresponding rms radii, neutron skin thicknesses, binding energies, separation energies, shell gap, and pairing gap have been performed using the most recent Skyrme parameterization. The calculated results have been compared with available experimental data to identify which of these parameterizations introduced equivalent results with the ex
... Show MoreThis work presents a simple method for determination of the neutron reflection coefficient (n) as a function of different neutron reflector materials.A laboratory neutron source (Am-Be) with activity of 16 ci is employed with a (BF3) neutron detector. Am-BeThree types of reflector materials are used as samples, the thickness of each sample is (5cm).It is found that( ?7) is: -For polyethlyene = 0.818
In this research, the influence of the fermentation treatments and baking in Iraqi’s flour type (Ibaa 99, Al-rashed, Tamus, Abu-grabe) and Turkish flour type (Muaamel) on phytic acid was investigated. In whole wheat flour, the phytic acid was (1500, 1290, 1450, 1230, 1440 ( mg/ 100 g flour respectively, and the inorganic phosphorous was (29.18, 25.15, 23.89, 20.85, 22.83) mg/100 g flour respectively. The dough prepared from flour with a higher phytic acid content also contained higher amount of phytic acid. During fermentation, degradation of phytic acid occurred. The cumulative loss of phytic acid after fermentation in all type of dough was ~ 23, 22, 34, 26 and 27% respectively،While increased of inorganic phosphorous occurred. The c
... Show MoreInternational Journal on Technical and Physical Problems of Engineering