In this paper, a fusion of K models of full-rank weighted nonnegative tensor factor two-dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have been mixed in an underdetermined reverberant environment. The model is adapted in an unsupervised manner under the hybrid framework of the generalized expectation maximization and multiplicative update algorithms. The derivation of the algorithm and the development of proposed full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D model. This optimizes each sub-model in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in the spectrogram. In addition, an initialization method is proposed to initialize the parameters in the K-wNTF2D. Experimental results on the underdetermined reverberant mixing environment have shown that the proposed algorithm is effective at separating the mixture with an average signal-to-distortion ratio of 3 dB.
The economic development and intense competition may make economic units neglected the social aspect as a service workers and the environment, the community and focus on the economic side and achieve profitability only, which puts it in a position of accountability of trade unions and bodies, environment, health, civil society organizations and the focus of many studies accounting in order to clarify social activities and disclosed in the financial statements, increasing pressure from multiple parties calling for governments to issue laws and regulations oblige economic units to disclose complete and accurate information in a timely manner for all social activities and be subj
... Show MoreAbstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreOne of topics that occupied alarge area in Iraqi society at the moment is the issue( of tribal separation and its relation to the organization of the community ) so we see in the civilizations and heritage of each community aset of provisions and laws that take the form of status customary or religious it is indicative of the great interest in Iraqi society in cotrolling the behavior of individuals to comply with values and social laws and become their behavior is consistent with the behavior of the total and adhere to the social values and be productive individuals within the subject and this can only be achieved from the social co
... Show MoreThe present work aimed to make a comparative investigation between three different ionospheric models: IRI-2020, ASAPS and VOACAP. The purpose of the comparative study is to investigate the compatibility of predicting the Maximum Usable Frequency parameter (MUF) over mid-latitude region during the severe geomagnetic storm on 17 March 2015. Three stations distributed in the mid-latitudes were selected for study; these are (Athens (23.50o E, 38.00o N), Jeju (124.53o E, 33.6o N) and Pt. Arguello (239.50o W, 34.80o N). The daily MUF outcomes were calculated using the tested models for the three adopted sites, for a span of five-day (the day of the event and two days preceding and following the event day). The calculated datasets were co
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show More