The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.
A field experiment was conducted during winter, 2015-16 with the objective to investigate the effect of bread wheat cultivars (Abu-Ghraib3, Ibaa99, and Alfeteh) and seed priming 100, 100, 150 mg L-1 of benzyl adenine, salicylic acid, gibberellic acid (GA3), respectively, ethanolic extract of Salix Sp., water extract of Glycyrrhiza glabra and distilled water (control) on grain growth rate (GGR), effective filling period (EFP) and accelerating of physiological maturity. Randomized complete block design with three replicates was applied. GA3×Ibaa99 surpassed others in grain yield (7.432 tonne ha-1) when gave the highest grain weight (45.13 mg grain-1) and GGR (1.5 mg grain-1 day-1) with the fastest time to start and end EFP (5 and 34 days), w
... Show MoreTen isolates were collected from different clinical sources from laboratory in medicine century . These isolates were belonging to the genus Salmonella depending on morphological and biochemical tests . The antibiotic scussptibility tests against 10 antibiotics were examined , and it was found that the 60% isolates have multiple resistant to antibiotic ,(70%) of isolates were resistant to ampicillin,(50%) were resistant to augmentin ,(40%) were resistant to ceftriaxone ,(20%) were resistant to cefotaxime and (10%) were resistant to ciprofloxacin and tetracycline while all isolates showed sensitivity to piperacillin, imipenem, amikacin and erythromycin .The ability of Salmonela isolates to produce ?-lactamase enzymes were tested usin
... Show MoreThe data communication has been growing in present day. Therefore, the data encryption became very essential in secured data transmission and storage and protecting data contents from intruder and unauthorized persons. In this paper, a fast technique for text encryption depending on genetic algorithm is presented. The encryption approach is achieved by the genetic operators Crossover and mutation. The encryption proposal technique based on dividing the plain text characters into pairs, and applying the crossover operation between them, followed by the mutation operation to get the encrypted text. The experimental results show that the proposal provides an important improvement in encryption rate with comparatively high-speed Process
... Show MoreSludge from stone-cutting (SSC) factories and stone mines cannot be used as decorative stones, stone powder, etc. These substances are left in the environment and cause environmental problems. This study aim is to produce artificial stone composite (ASC) using sludge from stone cutting factories, cement, unsaturated resin, water, silicon carbide nanoparticles (SiC-NPs), and nano-graphene oxide (NGO) as fillers. Nano graphene oxide has a hydrophobic plate structure that water is not absorbed due to the lack of surface tension on these plates. NGO has a significant effect on the properties of artificial stone due to its high specific surface area and low density in the composite. Its uniform distribution in ASC is very low due to its hydropho
... Show MoreThis article aim to estimate the Return Stock Rate of the private banking sector, with two banks, by adopting a Partial Linear Model based on the Arbitrage Pricing Model (APT) theory, using Wavelet and Kernel Smoothers. The results have proved that the wavelet method is the best. Also, the results of the market portfolio impact and inflation rate have proved an adversely effectiveness on the rate of return, and direct impact of the money supply.
In this paper,we focus on the investigated and studied of transition rate in metal/organic semiconductor interface due to quantum postulate and continuum transition theory. A theoretical model has been used to estimate the transition rate cross the interface through estimation many parameters such that ;transition energy ,driving electronic energy U(eV) ,Potential barrier ,electronic coupling ,semiconductor volume ,density ,metal work function ,electronic affinity and temperature T. The transition energy is critical facter of charge transfer through the interfaces of metal organic films device and itscontrol of charge injection and transport cross interface. However,the potential at interfa
... Show MoreThis research studies Reinforcing and applied load of Wear Rate for Epoxy composites contains from epoxy resin (Ep) as a matrix material and reinforced by Gawain red wood flour , Russian white wood flour , glass powder and rock wool fibers , with volume fraction (20%) for all samples in lab conditions. by using the load (10,20 ,30 ,40) Newton of iron disc for testing time(10) minute, and the results have shown that the reinforcing of epoxy resin led to decrease wear rate for all samples except the hybrid composites reinforced earth glass powder , that the wear rate values decrease from (22×10-9g/cm) to (4×10-9g/cm) of composite material(Ep+R.W.F) and thus(Ep+W.W.F) at la
... Show MoreThe aim of this work is to study the effect of diesel fuel percentage on the combustion processes in compression ignition engine using dual – fuel (diesel and LPG).
The brake thermal efficiency increased with the increase of diesel fuel rate at low loads, and decreased when load increased. To get sufficient operation in engine fueled with dual fuel, it required sufficient flow rate of diesel fuel, if the engine fueled with insufficient diesel fuel erratic operation with miss fire cycles presented.
Dual-fuel operation at part load showed higher specific fuel consumption than straight diesl operation. At full loads, brake specific fuel consumption of duel fuel engine approaches that for diesel fuel values.
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult
conditions like radiation, high temperature and noise with minimum cost of manufacturing and
maintenance. A vortex rate sensor made of wood has been designed and manufactured to study
theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that
the relation between the differential pressure taken from the sensor pickoff points and the angular
velocity of the sensor was linear.The present work involved theoretical and experimental study of
vortex rate sensor static characteri
The vortex rate sensor is a fluidic gyroscope with no moving parts and can be used in very difficult conditions like radiation, high temperature and noise with minimum cost of manufacturing and maintenance. A vortex rate sensor made of wood has been designed and manufactured to study theoretically and experimentally its static performance .A rig has been built to carry out the study,
the test carried out with three different air flow rates (100, 150, and 200 l/min).The results show that the relation between the differential pressure taken from the sensor pickoff points and the angular velocity of the sensor was linear.The present work involved theoretical and experimental study of vortex rate sensor static characteristics .Vortex rat