Preferred Language
Articles
/
eRaTGIcBVTCNdQwCZzZc
Drill Bit Selection Optimization Based on Rate of Penetration: Application of Artificial Neural Networks and Genetic Algorithms
...Show More Authors
Abstract<p>The drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the modeling part, a one-dimension mechanical earth model (1D MEM) parameters, drilling fluid properties, and rig- and bit-related parameters, were included as inputs. The optimizing process was then performed to propose the optimum drilling parameters to select the drilling bit that provides the maximum possible ROP. To achieve this, the corresponding mathematical function of the ANNs model was implemented in a procedure using the genetic algorithm (GA) to obtain operating parameters that lead to maximum ROP. The output will propose an optimal bit selection that provides the maximum ROP along with the best drilling parameters. The statistical analysis of the predicted bit types and optimum drilling parameters comparing the actual flied measured values showed a low root mean square error (RMSE), low average absolute percentage error (AAPE), and high correction coefficient (R2). The proposed methodology provides drilling engineers with more choices to determine the best-case scenario for planning and/or drilling future wells. Meanwhile, the newly developed model can be used in optimizing the drilling parameters, maximizing ROP, estimating the drilling time, and eventually reducing the total field development expenses.</p>
Crossref
View Publication
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Wed Aug 04 2021
Journal Name
Membranes
Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater
...Show More Authors

Reverse Osmosis (RO) has already proved its worth as an efficient treatment method in chemical and environmental engineering applications. Various successful RO attempts for the rejection of organic and highly toxic pollutants from wastewater can be found in the literature over the last decade. Dimethylphenol is classified as a high-toxic organic compound found ubiquitously in wastewater. It poses a real threat to humans and the environment even at low concentration. In this paper, a model based framework was developed for the simulation and optimisation of RO process for the removal of dimethylphenol from wastewater. We incorporated our earlier developed and validated process model into the Species Conserving Genetic Algorithm (SCG

... Show More
View Publication
Scopus (15)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Thu Nov 14 2024
Journal Name
Journal Of Emergency Medicine, Trauma And Acute Care
Novel isolation and optimization of anti-MRSA bacteriophages using plaque-based biokinetic methods
...Show More Authors

Background: MRSA (methicillin-resistant Staphylococcus aureus) is a global health problem. Many people are looking for new ways to combat MRSA, for example by using bacteriophages (phages). It has been extremely challenging to isolate a sufficient quantity of lytic anti-MRSA phages. Therefore, new techniques for separating, refining, and reworking anti-MRSA phages were sought in this study.

Methods: Of 437 S. aureus isolates, nine clinical MRSA isolates were obtained from three hospitals in Baghdad, Iraq and two ATCC MRSA strains were used to separate wild anti-MRS

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Applied Sciences
Multiobjective Optimization of Stereolithography for Dental Bridge Based on a Simple Shape Model Using Taguchi and Response Surface Methods
...Show More Authors

Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Stability Index for Treated Water of WTPs Located on Al-Karakh Side of Baghdad City using Artificial Neural Network (ANN) Technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 19 2024
Journal Name
An International Journal Of Optimization And Control: Theories &amp; Applications (ijocta)
Design optimal neural network based on new LM training algorithm for solving 3D - PDEs
...Show More Authors

In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.

View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Compression-based Data Reduction Technique for IoT Sensor Networks
...Show More Authors

Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the

... Show More
View Publication Preview PDF
Scopus (40)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Sat Aug 25 2012
Journal Name
Wireless Personal Communications
Multi-Objective Evolutionary Algorithm Based on Decomposition for Energy Efficient Coverage in Wireless Sensor Networks
...Show More Authors

Scopus (58)
Crossref (44)
Scopus Clarivate Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Heliyon
A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique
...Show More Authors

View Publication Preview PDF
Scopus (47)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Mon Feb 21 2022
Journal Name
Iraqi Journal For Computer Science And Mathematics
Fuzzy C means Based Evaluation Algorithms For Cancer Gene Expression Data Clustering
...Show More Authors

The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic

... Show More
View Publication
Crossref (1)
Crossref